Future prospects for charm physics at BESIII and beyond

Yangheng Zheng
on behalf of BESIII collaboration

University of Chinese Academy of Sciences

May. 22, 2015

Outline

- **♦ Current BEPCII/BESIII**
 - Operations and data taking plans
- Detector upgrade
 - **◆Endcap TOF**
 - **♦Inner tracking detector**
- Prospects for charm physics
 - **♦BESIII**
 - **♦** Super Tau-charm factory
- **♦**Summary

Current status of BEPCII

→ BEPCII: A double ring e⁺e⁻ collider

- **♦** A record $\stackrel{e^+}{L}_{peak} = 8.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ @ 3.773 GeV reached in Nov. 20, 2014
- ♦ Weekly record luminosity: 169 pb⁻¹, Average of daily lumi: >17 pb⁻¹
- ◆ 500 pb⁻¹ data collected @4.6 GeV: the limit of BEPCII energy region
- ◆ Bunch crossing time: 8ns → 6ns

Data samples available

- ◆ 20 points for R &QCD Scan: 500 pb⁻¹ finished in May 1st, 2015
- Currently: at Y(2175) resonance, plan: 100 pb⁻¹

Data samples @ charm threshold

- + CLEO-c: 818 pb⁻¹ @ ψ(3770)
- ♦ BESIII: 2.9 fb⁻¹ (~3.5 x CLEO-c data) @ψ(3770)

- ♦ BESIII: 0.5 fb⁻¹ @ ψ(4040)
- ◆ In 2015-2016 run period: 3 fb⁻¹ @4.17 GeV

Data taking plan

```
Approved plan for 2015/2016 run period
```

- **♦**4170 data taking 3 fb⁻¹, 5 months
- ♦ Data taking at around $χ_{c1}$ mass 25 days
 - ightharpoonup e+e- ightharpoonup χ_{c1} Collins fragmentation function
 - 2-3 points, 3.5136 (3 MeV below, 20 pb⁻¹)

```
3.5106 (180 pb<sup>-1</sup>)
```

3.5100 (0.5 MeV below) or χ_{c1}

mass for 180 pb⁻¹

♦Psi' scan 500 pb⁻¹ 25 days

Final goal for data set at threshold: ~20 fb⁻¹

BESIII detector upgrade

- Inner Drift Chamber appeared aging effect
 - ◆ Cathode aging → Malter discharge
 - **→** Adding ~2000ppm water vapor into the gases
 - ◆ Anode aging → gain drop 14% 26%
 - Short-term upgrade plan: a new inner drift chamber
 - ◆ Long-term upgrade plan: a 3-layer CGEMs inner tracker
- ◆ Endcap TOF (ETOF: scintillator + PMT)
 - ◆ To improve PID
 - Upgrade with MRPC
 - → Less affected by scattering
 - **→** Tracking with more readout pads
 - **♦** Total resolution: ~140ps → <80ps

Upgrade for inner tracking detector

- New inner drift chamber
 - ♦ Chamber wiring finished in January, 2015
 - Ready for installation
- CGEM inner tracker
 - Proposed by the Italy group;
 - 3-Layer CGEM foils (KLOE2-like);
 - The design is coming to a conclusion;
 - construction of the layer 2 has started;
 - beam test of the prototype is ongoing;
 - software: progress in simulation and reconstruction.

Endcap TOF upgrade

- Two MRPCs has been installed.
 - → Testing with real data
 - **♦** A VERY preliminary calibration ⇒ time resolution ~70 ps
- The production of the whole ETOF system: finished
- Performance and stability test is carrying
 - → on~4 months cosmic-ray test
- ◆ Simulation: new GDML and Digitization is developed.

Physics at tau-charm Energy Region

- Hadron form factors
- Y(2175) resonance
- Mutltiquark states with s quark, Zs
- MLLA/LPHD and QCD sum rule predictions

- Light hadron spectroscopy
- Gluonic and exotic states
- Process of LFV and CPV
- Rare and forbidden decays
- Physics with τ lepton

- XYZ particles
- D mesons
- f_D and f_{Ds}
- D_0 - D_0 mixing
- Charm baryons

Charm facilities

- Hadron colliders (huge cross-section, energy boost)
 - **→** Tevetron (CDF, D0)
 - **◆LHC (LHCb, CMS, ATLAS)**
- ◆ e⁺e⁻ Colliders (more kinematic constrains, clean environment, ~100% trigger efficiency)
 - ◆ B-factories (Belle, BaBar)
 - **◆**Threshold production (CLEOc, BESIII)
 - **♦** Can not compete in statistics with Hadron colliders & B-factories!!!
 - **♦ Quantum Correlations (QC) and CP-tagging are unique**
 - ◆Only D meson pairs, no extra CM Energy for pions
 - **♦** Systematic uncertainties cancellations while applying double tag technique

Physics at Charm threshold

- Decay constants & form factors for Charm meson
- Quantum correlations at ψ(3770)
 - **♦ CPV** measurements
 - Strong phase measurements
- ◆Rare decays
- Charm baryons
- **♦** D⁰-<u>D</u>⁰ mixing & CPV @ψ(4040)

Many new BESIII results have been released!
Selected results will be shown!

Double Tag (DT) techniques

- ◆ 100% of beam energy converted to D pair (Clean environment, kinematic constrains v Recon.)
- ightharpoonup D generated in pair \Rightarrow absolute Branching fractions
- $igoplus At \ \psi(3770)$ charm production is $D^0 \overline{D}{}^0$ and $D^+ D^-$
- **♦** Fully reconstruct about 15% of *D* decays

◆ Double tag techniques: Hadronic tag on one side, on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum (Double tag efficiency is high.)

f_{D(s)+}: Leptonic decays

$$D^{+} \int_{\overline{d}}^{W^{+}} \Gamma\left(D^{+} \rightarrow \ell^{+} \nu_{\ell}\right) = \int_{D}^{2} \left|V_{cd}\right|^{2} \frac{G_{F}^{2}}{8\pi} m_{D} m_{\ell}^{2} \left(1 - \frac{m_{\ell}^{2}}{m_{D}^{2}}\right)^{2}$$

- **Extract decay constant** $f_{D(s)}$ incorporates the strong interaction effects (wave function at the origin)
 - ♦ Multiple tests with charm: f_D , f_{Ds} and f_D/f_{Ds}
- ◆To validate Lattice QCD calculation of f_{B(s)} and provide constrain of CKM-unitarity
- **♦** Sensitive to New Physics (Charged Higgs contribution, ...)

f_{D+} Results $(D^+ \rightarrow \mu^+ \nu)$

Phy. Rev. D89, 051104

- ◆ 2.92fb⁻¹ @3.773 GeV
- Muon counter information applied
- **♦ Kinematic variable: M²**_{miss}

$$M_{\text{miss}}^2 = \left(E_{\text{Beam}} - E_{\mu}\right)^2 - \left(-\vec{p}_{\text{tag}} - \vec{p}_{\mu}\right)^2 \square 0$$

- ♦ 451 D → μν candidates observed
 - Low background

$$B(D^+ \to \mu^+ \nu) = (3.71 \pm 0.19 \pm 0.06) \times 10^{-4}$$

 $f_{D^+} = (203.2 \pm 5.3 \pm 1.8) \Leftarrow |Vcd| \text{ of CKM-Fitter Input}$
 $|Vcd| = 0.221 \pm 0.006 \pm 0.005$

 \Leftarrow LQCD calculated f_D = 207±4 MeV[PRL100(2008)062002]

The error is still dominated by statistics! More data is needed.

$f_{D(s)+}$ Comparison

BESIII: 2.7% with 2.92fb⁻¹

BESIII final: 1.5% with 10 fb⁻¹

CLEO-c: 2.5% with 0.68fb⁻¹

BESIII final: 1.25% with 5 fb⁻¹

Form Factors: Semileptonic decays

- $+D_{(s)} \rightarrow P l \nu$ (Theoretically clean)
 - **♦** Measure |V_{cx}| x FF
 - **♦ Charm physics:**
 - **♦** CKM-unitarity \Rightarrow | V_{cx} |, extract FF, test LQCD
 - **◆Input LQCD FF to test CKM-unitarity**
 - **♦ B physics:** Validate LQCD for form factor, extract |V_{ub}| to test CKM-unitarity
 - **◆Example:** B→π I $\nu \Rightarrow |V_{ub}| = 3.92\pm0.09\pm0.45$ (Theory) rely on LQCD Form Factor calculations (provide perfect calibration)

Form Factors fit results $(D^0 \to K/\pi e^+ v)$

	D ⁰ →K ⁻ e ⁺ v		D ⁰ →π⁻e⁺v		
Cimania Dala	f _K ⁺ (0) V _{cs}	0.7209±0.0022±0.0033	$f_{\pi}^+(0) V_{cd} $	0.1475±0.0014±0.0005	
Simple Pole	M _{pole}	1.9207±0.0103±0.0069	M _{pole}	1.9114±0.0118±0.0038	
Mod. Pole	f _K ⁺ (0) V _{cs}	0.7163±0.0024±0.0034	$f_{\pi}^+(0) V_{cd} $	0.1437±0.0017±0.0008	
wod. Pole	α	0.3088±0.0195±0.0129	α	0.2794±0.0345±0.0113	
ISGW2	f _K +(0) V _{cs}	0.7139±0.0023±0.0034	$f_{\pi}^+(0) V_{cd} $	0.1415±0.0016±0.0006	
15GW2	r _{ISGW2}	1.6000±0.0141±0.0091	r _{ISGW2}	2.0688±0.0394±0.0124	
Series.2.Par	f _K +(0) V _{cs}	0.7172±0.0025±0.0035	$f_{\pi}^+(0) V_{cd} $	0.1435±0.0018±0.0009	
Series.z.Par	r ₁	-2.2278±0.0864±0.0575	r ₁	-2.0365±0.0807±0.0260	
	f _K ⁺ (0) V _{cs}	0.7196±0.0035±0.0041	$f_{\pi}^+(0) V_{cd} $	0.1420±0.0024±0.0010	
Series.3.Par	r ₁	-2.3331±0.1587±0.0804	r ₁	-1.8434±0.2212±0.0690	
	r ₂	3.4223±3.9090±2.4092	r ₂	-1.3871±1.4615±0.4677	

18

Comparison of Form Factors

Gang Rong CKM2014

BESIII: the most precise measurements

The error of $f_+^{D\to\pi}$ is still dominated by statistics.

CKM matrix elements |Vcd(s)| Gang Rong CKM2014

BESIII: the most precise measurements

Reaches for rare charm decays?

21

```
10-0
                                             SM predictions and experimental reaches
10^{-1}
        Cabibbo favor
        Single Cabibbo suppressed
10^{-4}
        Doubly Cabibbo suppressed
                                                                                                               CLEO-c
10-5
                                                    D^0 \to \overline{K}^{*0} \gamma / \phi \gamma / \rho \gamma / \omega \gamma
        Radiative decays
                                                    D^{+} \rightarrow K^{*+} \gamma / \rho^{+} \gamma D_{S}^{+} \rightarrow K^{*+} \gamma / \rho^{+} \gamma
                                                                                                              BESIII final/B factory
10^{-7}
        Long distance:
       Vector meson Dominance D^0 \to \gamma \gamma / VV'(\to ll) / hV(\to ll) / hh'V(\to ll) LHCb Super-B
10<sup>-8</sup>
10-9
10-10
         Short distance FCNC
                                               D^{0}/D^{+} \rightarrow \gamma \gamma / V l^{+} l^{-} / h l^{+} l^{-} / h h^{+} l^{+} l^{-}
10-11
                                                  D^0 \rightarrow \mu^+ \mu^-
10-12
                                                  D^0 \rightarrow e^+ e^-
10^{-13}
10^{-14}
                                                           D \rightarrow (h) \mu^{\dagger} e^{-}
10-15
      Forbidden decays: LNV, LFV, BNV D \rightarrow (hh)e^+e^+/(hh)\mu^+\mu^+
```

Rare decays $(D^{\theta} \rightarrow \gamma \gamma)$

arXiv:1505.03087

Double tag method

Tag modes

$$\bar{D}^0 \to K\pi$$

$$\bar{D}^0 \to K\pi\pi^0$$

$$\bar{D}^0 \to K3\pi$$

$$\bar{D}^0 \to K3\pi\pi^0$$

$$\bar{D}^0 \to K\pi2\pi^0$$

$$\mathcal{B}(D^0 \to \pi^0 \pi^0) = (8.24 \pm 0.21 (\text{stat.}) \pm 0.30 (\text{syst.})) \times 10^{-4}$$

BESIII <u>2.92fb⁻¹@3770</u>:

$$\mathcal{B}(D^0 \to \gamma \gamma) < 3.8 \times 10^6 @90\% C.L.$$

BESIII 10fb⁻¹@3770:

$$B_{D^0 \to \gamma \gamma)} < 1.0 \times 10^{-6}$$

BESIII has much smaller background than that at B factory, peaking background from $D^0 \rightarrow \pi^0 \pi^0$ is under control.

$D^{\theta} \rightarrow \gamma \gamma$ reach at super τ -charm

1 ab -1 at threshold at super τ-charm factory will reach Long Distance contribution: about 60 events are expected per year.

δ and γ/ϕ_3 input

♦ *D* hadronic parameters for a final state

$$f \colon rac{A(\overline{D}^0 o f)}{A(D^0 o f)} \equiv -r_D e^{-i\delta_D}$$

- Charm mixing parameters: $x = \frac{\Delta M}{\Gamma}$, $y = \frac{\Delta I}{2\Gamma}$
 - ♦ Time-dependent WS $D^0 \rightarrow K^+\pi^-$ rate ⇒

Time-dependent ws
$$D^{\circ} \rightarrow K^{+}\pi^{-}$$
 rate \Rightarrow $y' = y \cos \delta_{K\pi} - x \sin \delta_{K\pi} = (0.72 \pm 0.24)\%$ (LHCb 2012)

- $igspace{} igspace{} \delta_{K\pi}$: QC measurements from Charm factory
- $\uparrow \gamma/\phi_3$ measurements from $B \rightarrow D^0 K$
 - \bullet b \rightarrow u : γ/ϕ_3 = arg V^*_{ub}
 - \bullet most sensitive method to constrain γ/ϕ_3 at present
 - GLW, ADS method
 - r_D , δ_D : QC measurements from Charm factory
 - GGSZ method
 - $+c_i$, s_i : QC measurements from Charm factory

Time-integrated decay rates

- No time dependent information at Charm threshold
- Anti-symmetric wavefuction:

$$\Gamma^2_{ij} = \left| \langle i | D^0 \rangle \langle j | \overline{D}{}^0 \rangle - \langle j | D^0 \rangle \langle i | \overline{D}{}^0 \rangle \right|^2$$

Double tag rates:

$$A_i^2 A_j^2 \left[1 + r_i^2 r_j^2 - 2r_i r_j \cos(\delta_i + \delta_j) \right]$$

- ♦ CP tag: r=1, δ=0 or π; l^{\pm} tag: r=0
- Single and Double tag rates

$$ightharpoonup \mathbf{z}_f \equiv 2\cos\delta_f$$
 , $r_f \equiv \frac{A_{DCS}}{A_{CF}}$, $R_M \approx \frac{x^2 + y^2}{2}$

$\psi(3770) \to [D^0 \bar{D}^0 - \bar{D}^0 D^0] / \sqrt{2}$
$= -[D_{CP+}D_{CP-} - D_{CP-}D_{CP+}]/\sqrt{2}$
$D_{CP\pm} = [D^0 \pm \bar{D}^0]/\sqrt{2}$

C-odd	f	f	I ⁺	ŀ	<i>CP</i> +	CP-
f	$R_M[1+r_f^2(2-z_f^2)+r_f^4]$					
$ar{f}$	$1 + r_f^2 (2 - z_f^2) + r_f^4$	$R_M[1+r_f^2(2-z_f^2)+r_f^4]$				
l^+	$r_f{}^2$	1	R_{M}			
ŀ	1	$r_f{}^2$	1	R_{M}		
<i>CP</i> +	$1+r_f\big(r_f+z_f\big)$	$1+r_f\big(r_f+z_f\big)$	1	1	0	
CP-	$1+r_f(r_f-z_f)$	$1 + r_f \big(r_f - \mathbf{z}_f \big)$	1	1	4	0
Single Tag	$1 + r_f^2 - r_f z_f (A - y)$!	$2[1 \pm (A$	- y)]
25						

$\delta_{K\pi}$ in $D \rightarrow K\pi$ (BESIII: 2.9 fb⁻¹)

A simple picture:
$$\frac{\langle K\pi|\overline{D^0}\rangle}{\langle K\pi|D^0\rangle}\equiv\frac{\overline{A_{K\pi}}}{A_{K\pi}}\equiv rK_{\pi}e^{i\delta_{K\pi}}$$

$$\langle K\pi|D_{CP^{\pm}}\rangle = (\langle K\pi|D^{0}\rangle \pm \langle K\pi|\overline{D^{0}}\rangle)/\sqrt{2} \implies \sqrt{2}A_{CP^{\pm}} = A_{K\pi} \pm \overline{A_{K\pi}}$$

$$\frac{\sqrt{2}A_{\text{CP+}}}{A_{\text{K}\pi}} \Rightarrow 2r_{K\pi} \cdot \cos \delta_{K\pi} \approx A_{\text{CP}\to K\pi} \equiv \frac{|A_{\text{CP-}}|^2 - |A_{\text{CP+}}|^2}{|A_{\text{CP-}}|^2 + |A_{\text{CP+}}|^2}$$

$$= \frac{Br(D_{\text{CP-}}\to K\pi) - Br(D_{\text{CP+}}\to K\pi)}{Br(D_{\text{CP-}}\to K\pi) + Br(D_{\text{CP+}}\to K\pi)}$$

- $igoplus Measuring \delta_{K\pi}$ from rate differences if using external $r_{K\pi}$
- Reconstructed modes:
 - ightharpoonup Flavor tags: $K^-\pi^+$, $K^+\pi^-$
 - ♦ CP+ tags (5 modes): K^-K^+ , $\pi^+\pi^-$, $K_S^0\pi^0\pi^0$, $\pi^0\pi^0$, $\rho^0\pi^0$
 - \bullet CP- tags (3 modes): $K_S^0 \pi^0$, $K_S^0 \eta$, $K_S^0 \omega$

$\delta_{K\pi} \text{ in } D \to K\pi \text{ (BESIII: 2.9 fb}^{-1})$

Direct result:

$$A_{CP\to K\pi} = (12.7 \pm 1.3(\text{Stat.}) \pm 0.7(\text{sys.}))\%$$

 $2r_{K\pi}\cos\delta_{K\pi} + y = (1 + R_{WS})\cdot A_{CP\to K\pi}$

Using external input for $r_{K\pi}^{-2}$, y, R_{WS} we extract:

$$\cos \delta_{K\pi} = 1.02 \pm 0.11 \pm 0.06 \pm 0.01$$

If BESIII accumulate 10 fb⁻¹ on threshold D data:

sensitivity of $cos\delta_{K\pi} \sim 0.06$

y_{CP} measurement (BESIII: 2.9 fb⁻¹)

PLB 744, 339(2015)

We measure the y_{CP} using CP-tagged semi-leptonic D decays, which allows to access CP asymmetry in

CP Tag

Single Tag decay rate (CP tags)

$$+ \Gamma_{CP^{\pm}} 2 |A_{CP^{\pm}}|^2 (1 \mp y)$$

Double Tag decay rate (Flavor tags + CP tags)

$$\bullet \Gamma_{l;CP^{\pm}} |A_l|^2 |A_{CP^{\pm}}|^2$$

Neglect term y^2 or higher order

Flavor Tag

- **Reconstructed modes:**
 - Flavor tags: Keν_e, Kμν_u
 - CP+ tags (3 modes): K^-K^+ , $\pi^+\pi^-$, $K_S^0\pi^0\pi^0$
 - CP- tags (3 modes): $K_S^0 \pi^0$, $K_S^0 \eta$, $K_S^0 \omega$

y_{CP} measurement (BESIII: 2.9 fb⁻PLB 744, 339(2015)

$$y_{CP} = (-2.0 \pm 1.3 \pm 0.7)\%$$

- Result is statistically limited
- Systematic uncertainty is relative small
- Most precise measurement with QC charm mesons
- In the limit of no CP violation:

• Super
$$\tau$$
-C: $\Delta(y_{CP}) \sim 0.1\%$

World average

 $\mathbf{y}_{\mathrm{CP}}\left(\%\right)$

 $y_{CP} = y$

$K_s\pi^+\pi^-$ (BESIII preliminary: 2.9 fb⁻¹)

- \bullet Extract c_i , s_i for " γ/ϕ_3 GGSZ method"
- igoplus Preliminary results presented @ APS meeting, Apr. 2014

 -0.107 ± 0.240

Source: CLEO Collaboration, Physical Review D, vol 82., pp. 112006 - 112035

 -0.301 ± 0.140

 0.798 ± 0.070

 0.888 ± 0.036

Charm baryon Λ_c^{\pm} decays

- \bullet BESIII: Λ_c^{\pm} Pair production at threshold (4.6GeV)
- Largest data set @4.6 GeV
- **♦** Double Tag ⇒ Model-independent absolute Λ_c^{\pm} decay Branching fractions Belle: first model-independent

DT	Λ_c^{\pm}	yie	lds
	_		

			2000 — (b) WS sam	ple	and the same of th		
Decay modes	global fit \mathcal{B}	$PDG \mathcal{B}$	Belle \mathcal{B}	.1	2.2	2.3 2.4 2.5 M _{miss} (D ^(*) pπ) (GeV/c²)		
pK_S	1.48 ± 0.08	1.15 ± 0.30		-				
$pK^-\pi^+$	5.77 ± 0.27	5.0 ± 1.3	$6.84 \pm 0.24^{+0.21}_{-0.27}$					
$pK_S\pi^0$	1.77 ± 0.12	1.65 ± 0.50	0.21					
$pK_S\pi^+\pi^-$	1.43 ± 0.10	1.30 ± 0.35						
$pK^-\pi^+\pi^0$	4.25 ± 0.22	3.4 ± 1.0						
$\Lambda\pi^+$	1.20 ± 0.07	1.07 ± 0.28						
$\Lambda \pi^+ \pi^0$	6.70 ± 0.35	3.6 ± 1.3						
$\Lambda \pi^+ \pi^- \pi^+$	3.67 ± 0.23	2.6 ± 0.7						
$\Sigma^0\pi^+$	1.28 ± 0.08	1.05 ± 0.28						
$\Sigma^+\pi^0$	1.18 ± 0.11	1.00 ± 0.34						
$\Sigma^{+}\pi^{+}\pi^{-}$	3.58 ± 0.22	3.6 ± 1.0						
$\Sigma^+\omega$	1.47 ± 0.18	2.7 ± 1.0						

Measurement (PRL113,042002)

2000

Preliminary results: statistical error only!

Absolute BR for $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

- **♦** Dominated process: Λ_c^+ → $\Lambda e^+ \nu_e$
- Input for LQCD calculations
- First direct absolute BF measurement
- ♦ Theoretical predictions: 1.4% ~ 9.2%

$$B(\Lambda_c^+ \to \Lambda e^+ \nu_e) = (3.63 \pm 0.38 \pm 0.??)\%$$

Statistical error only!
Statistical limited measurement!

Prospects for Λ_c decays

Can BEPCII challenge the CM energy limit at 4.6 GeV?

With larger Λ_c data sample

- → PWA ⇒ intermediate structures in 3-body decays
- More semileptonic decays: nlv, Λ*lv, ΣXlv ...
- ♦ Decay asymmetry parameters α $\Leftarrow \Lambda_c$ + \rightarrow *BP/BV*
- Λ_c⁺ Rare decays search
 - ♦ Weak radiative decay $\Lambda_c^+ \rightarrow \gamma \Sigma^+$
 - → FCNC Λ_c ⁺ → pl⁺l⁻
 - ♦ LNV Λ_c + → peµ

Future charm facilities (CHARM 2013)

Future charm facilities

Marcello A. Giorgi INFN and Università di Pisa

CHARM 2013- Manchester 31 August-4 September, 2013

Novosibirsk machine

The Italian Tau-Charm

Another proposed Machine

- ♦ In China
- ◆ e+e- collider
- ◆ Wide c.m. energy coverage: 2 7 GeV
- ◆ Collider + 4th generation SR source
 - **♦** Symmetric two ring collision
 - **♦** Collision & SR: sharing mode feasible
- ◆ Peak luminosity: 1 x 10³⁵ cm⁻²s⁻¹ (Optimized @ E_{cm} = 4 GeV)
- ◆ Data set: 1 ab⁻¹ at Charm threshold
- Polarized beam
 - ◆ Polarized electron beam source
 - Siberian Snake curing depolarization

High Intensity Electron Positron Accelerator

A potential location: Hefei

- University of Science and Technology of China (USTC)
- National Synchrotron
 Radiation Lab and Hefei Light
 Source, operated by USTC
- The only National Lab operated by University in China. (Totally Four National Labs in China)

Detector

Expected Key features

- ◆ Vertex very low material budget ~0.15-0.3%X₀/layer, <50µm position resolution;</p>
- ◆ MDC pT resolution @1GeV/c 0.5~0.7%, dE/dx resolution <7%, low material budget;</p>
- ◆ PID π/K (and K/p) 3-4σ separation up to 2GeV/c, low material (<0.5X₀);</p>
- **◆ EMC** stochastic term <2%/√E, constant term <0.75%;
- ♦ MUD μ/π suppression power >10.

Some sensitivities at HIEPA

- ♦ With 1 ab⁻¹ data at threshold
 - **♦** Direct CP violation in D⁺→hh sensitivity: 10^{-3} ~ 10^{-4}
 - ♦ Probe y: $\Delta(y_{CP}) \sim 0.1\%$
 - +RM = $(x^2 + y^2)/2 \sim 10^{-5}$ in $K\pi$ and Kev channels
 - $\Delta(\cos\delta_{K\pi}) \sim 0.007$; $\Delta(\delta_{K\pi}) \sim 2^{\circ}$
- ◆Clean background and better systematic control in threshold production (complementary to the future B factory results)

HIEPA related activities

- Several domestic workshops
- ◆ Jan 13-16, 2015, HIEPA International Workshop on Physics at Future High Intensity Collider @ 2 – 7 GeV in Hefei, China
- → June 3 4, 2015, Domestic workshop on "Physics, applications and Key technologies on 2 – 7 GeV HIEPA",
 - more "official" discussions within HEP community in China
- ◆ CDR for accelerator & detector in progress (Will be ready by 2016)

Summary

- Many BESIII Charm results are released in this conference! It's just the beginning!
- Charm at threshold provides opportunities for both QCD and New Physics
 - Very active on XYZ analyses
 - ♦ Will provide best measurements: f_{D(s)} & FF
 - Unique access to strong phases & ability to extract modelindependent results with charm at threshold
 - Charm baryon results
- BESIII team has learned and developed technology with charm at threshold.
- ◆ BESIII will continue to run 6 8 years.
- ♦ It is natural to propose the e+e- intensity frontier for the τ-charm energy region in China ⇒ High Intensity Electron Positron Accelerator (HIEPA)

Thank you

Backup slides