BESIII物理最新成果

(For BESIII Collaboration) Institute of High Energy Physics, Beijing, China

第十一届全国粒子物理学术会议-昆明 2012年4月20日

Outline

Status of BEPCII/BESIII

Selected Results from BESIII

- Light Hadron Spectroscopy
- Charmonium Transitions
- Charmonium Decays
- Charm Decays (in progress)
- > Summary

Bird view of BEPCII /BESIII

BESIII

detector

Storage ring

BSRF

IHEP, Beijing

Beijing electron positron collider BEPCII

Beam energy 1.0-2.3 GeV Energy spread: 5.16 \times 10^{-4}

Linac

Design luminosity 1×10^{33} /cm²/s @ ψ (3770) Achieved luminosity ~0.65 $\times 10^{33}$ /cm²/s

2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BECPII/BESIII data taking 3

The BESIII Detector

The **BESIII** Collaboration

BESIII commissioning

- July 19, 2008: first e⁺e⁻ collision event in BESIII
- Nov. 2008: ~ 14M ψ (2S) events for detector calibration
- 2009: 106M ψ(2S) 4×CLEOc **225M J/** ψ **4**×**BESII**

World's largest sample of $J/\psi,\psi(2S)$ and $\psi(3770)$ (and still growing)

- 2010: 900 pb⁻¹ ψ (3770) 2011: 2000 pb⁻¹ ψ (3770) 3.5×CLEOC 470 pb⁻¹ @ 4.01 GeV
- 2012: tau mass measurement ψ (2S): 0.3 billion; J/ψ : from ~April 1

Tentative future running plans:

2013: D_s physics (E_{cm} =4170 MeV) + R scan (E_{cm} > 4 GeV) 2014: ψ'/τ /R scan (E_{cm} > 4 GeV); 2015: $\psi(3770)$: 5-10 fb⁻¹ for DD physics (our final goal)

physics at **BESIII**

This Talk

Charmonium physics:

- precision spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy
- multiquark states
- glueball & hybrid
- two-photon physics
- form factors

Charm physics:

- (semi)leptonic + hadronic decays
- decay constant, form factors
- CKM matrix: Vcd, Vcs
- D⁰-D⁰bar mixing and CP violation
- rare/forbidden decays

Tau physics:

- Tau decays near threshold
- tau mass scan

...and many more.

arXiv:0809.1869 [hep-ex] IJMP A V24, No1(2009)supp

Recent Results on Light Hadron Spectroscopy

- $p\bar{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\bar{p}$
- X(1835) and two new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- X(1870) in $J/\psi \rightarrow \omega a_0(980)\pi$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of \mathbf{J}/ψ and $\psi(2S)$

Enhancement at $p\overline{p}$ threshold in $J/\psi \rightarrow \gamma p\overline{p}$

Observed at BESII in 2003 (PRL,022001) agree with spin zero expectation $M = 1860_{-10-25}^{+3} + 5$ MeV, $\Gamma < 38$ MeV (90% CL) Confirmed at BESIII in 2010 (CPC 34,421 (2010)) $M = 1859_{-13-26}^{+6}$ MeV, Γ < 30 MeV (90% CL)

Many possibilities:

normal meson/ $p\overline{p}$ bound state/multiquark/glueball/Final state interaction effect(FSI).....

Spin-parity analysis

is essential for determining place in the spectrum and possible nature.

arXiv: 1112.0942 Accepted by PRL

Spin-Parity analysis of $J/\psi \rightarrow \gamma p \overline{p}$ (M_{pp} < 2.2GeV)

Four components: $X(p\overline{p}), f_2(1910), f_0(2100),$ and 0^{++} phase space

Include the FSI effect

Fit features:

- The fit with BW and Swave FSI(I=0) factor can well describe $p\overline{p}$ mass threshold structure.
- It is much better than that Without FSI effect (7.1σ)

10

Spin-parity, mass, width and Br. of $X(p\overline{p})$:

>6.8 σ better than other \mathbf{J}^{PC} assignments. $J^{PC} = 0^{-+}$

model: Model dependent uncertainty $M = 1832^{+19}_{-5}(stat)^{+18}_{-17}(syst) \pm 19(model) MeV/c^2$ (Different FSI models) $\Gamma = 13 \pm 39(\text{stat})^{+10}_{-13}(\text{syst}) \pm 4(\text{model}) \text{ MeV}/c^2 \text{ or } \Gamma < 76 \text{ MeV}/c^2 @ 90\% \text{ C.L.}$ $Br(\mathbf{J}/\psi \rightarrow \gamma X(p\overline{p}))Br(X(p\overline{p}) \rightarrow p\overline{p}) = (9.0^{+0.4}_{-1.1}(\text{stat})^{+1.5}_{-5.0}(\text{syst}) \pm 2.3(\text{model})) \times 10^{-5}$

arXiv: 1112.0942 Accepted by PRL

Spin-Parity analysis of $\psi(2S) \rightarrow \gamma p \overline{p}$ (M_{pp} < 2.2GeV)

M, Γ and \mathbf{J}^{PC} of $X(p\overline{p})$ are fixed to the results obtained from \mathbf{J}/ψ decays. $Br(\psi(2S) \rightarrow \gamma X(p\overline{p}))Br(X(p\overline{p}) \rightarrow p\overline{p})$ $= (4.57 \pm 0.36(\text{stat})^{+1.23}_{-4.07}(syst) \pm 1.28(\text{model})) \times 10^{-6}$

The production ratio R:

$$\mathsf{R} = \frac{Br(\psi(2S) \to \gamma X(p\overline{p}))}{Br(\mathbf{J}/\psi \to \gamma X(p\overline{p}))} = \left(5.08^{+0.71}_{-0.45}(\text{stat})^{+0.67}_{-3.58}(\text{syst}) \pm 0.12(\text{model})\right)\%$$

It is suppressed compared with 12% rule.

Recent Results on Light Hadron Spectroscopy

- $p\overline{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\overline{p}$
- X(1835) and two new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- X(1870) in $J/\psi \rightarrow \omega a_0(980)\pi$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of \mathbf{J}/ψ and $\psi(2S)$

Confirmation of X(1835) and two new structures

Recent Results on Light Hadron Spectroscopy

- $p\overline{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\overline{p}$
- X(1835) and two new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- X(1870) in $J/\psi \rightarrow \omega a_0(980)\pi$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of \mathbf{J}/ψ and $\psi(2S)$

X(1870) in J/ $\psi \rightarrow \omega X, X \rightarrow a_0^{\pm}(980)\pi^{\mp}$ PRL 107, 182001(2011)

Recent Results on Light Hadron Spectroscopy

- $p\overline{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\overline{p}$
- X(1835) and two new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- X(1870) in $J/\psi \rightarrow \omega a_0(980)\pi$
- η (1405) in J/ $\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of \mathbf{J}/ψ and $\psi(2S)$

17

η(1405) in J/ψ→γf₀(980)π⁰, f₀(980)→2π

- Helicity analysis indicates the peak at 1400MeV is from $\eta(1405)$, not from $f_1(1420)$ $Br(J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0 \rightarrow \gamma \pi^0 \pi^+ \pi^-)$ $Br(J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0 \rightarrow \gamma \pi^0 \pi^0 \pi^0)$ $= (1.50 \pm 0.11(stat.) \pm 0.11(syst.)) \times 10^{-5}$ $= (7.10 \pm 0.82(stat.) \pm 0.72(syst.)) \times 10^{-6}$
- Large Isospin-violating decay rate:

$$\frac{BR(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{BR(\eta(1405) \to a_0(980)\pi^0 \to \pi^0\pi^0\eta)} \approx (17.9 \pm 4.2)\%$$

In general, magnitude of isospin violation in strong decay should be <1%. $a_0 - f_0$ mixing alone can not explain the branching ratio of $\eta(1405) \rightarrow f_0(980)\pi^0$

Anomalous Lineshape of $f_0(980)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$

Surprising result:

very narrow $f_0(980)$ width: <11.8 MeV/ c^2 @90% C.L. much narrower than the world average (PDG 2010: 40-100 MeV/ c^2)

A possible explanation is KK^* loop, Triangle Singularity (TS) (J.J. Wu et al, PRL 108, 081803(2012))

New results on $\eta' \rightarrow \pi \pi \pi$

New results:

 $Br(\eta' \to \pi^+ \pi^- \pi^0) = (3.83 \pm 0.15 \pm 0.39) \times 10^{-3} \quad (\text{PDG2010:} (3.6^{+1.1}_{-0.93}) \times 10^{-3})$ $Br(\eta' \to \pi^0 \pi^0 \pi^0) = (3.56 \pm 0.22 \pm 0.34) \times 10^{-3} \quad (\text{PDG2010:} (1.68 \pm 0.22) \times 10^{-3})$

For the decay $\eta' \rightarrow \pi^0 \pi^0 \pi^0$, it is two times larger than the world average value.

Comparison: Isospin violations in $\eta' \rightarrow \pi \pi \pi$:

$$\frac{BR(\eta' \to \pi^+ \pi^- \pi^0)}{BR(\eta' \to \pi^+ \pi^- \eta)} \approx 0.9\%, \quad \frac{BR(\eta' \to \pi^0 \pi^0 \pi^0)}{BR(\eta' \to \pi^0 \pi^0 \eta)} \approx 1.6\%$$

Recent Results on Light Hadron Spectroscopy

- $p\overline{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\overline{p}$
- X(1835) and two new structures in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- X(1870) in $J/\psi \rightarrow \omega a_0(980)\pi$
- $\eta(1405)$ in $J/\psi \rightarrow \gamma f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$
- 3π Decays of J/ψ and $\psi(2S)$

3π Decays of J/ψ and $\psi(2S)$

 $J/\psi \rightarrow \pi^+\pi^-\pi^0$ decays are dramatically different From $\psi(2S) \rightarrow \pi^+\pi^-\pi^0$ decays:

- \mathbf{J}/ψ is dominated by ρ
- $\psi(2S)$ is strongly populated by higher mass state absent in J/ψ decay

Precision measurement of branching fractions:

 $Br(J/\psi \to \pi^{+}\pi^{-}\pi^{0}) = (2.137 \pm 0.004(stat)^{+0.058}_{-0.056}(syst)^{+0.027}_{-0.026}(norm)) \times 10^{-2}$

$$Br(\psi(2S) \to \pi^{+}\pi^{-}\pi^{0}) =$$

$$(2.14 \pm 0.03(stat)^{+0.08}_{-0.07}(syst)^{+0.09}_{-0.08}(norm)) \times 10^{-4}$$

The ratio of these two branching fractions: $\frac{Br(\psi(2S) \rightarrow \pi^{+}\pi^{-}\pi^{0})}{Br(J/\psi \rightarrow \pi^{+}\pi^{-}\pi^{0})} = \left(1.00 \pm 0.01(\text{stat})^{+0.06}_{-0.05}(\text{syst})\right)\%$

 $\rho \pi \text{ puzzle: } Q_h = \frac{Br(\psi(2S) \rightarrow hadrons)}{Br(\mathbf{J}/\psi \rightarrow hadrons)} \cong \frac{Br(\psi(2S) \rightarrow e^+e^-)}{Br(\mathbf{J}/\psi \rightarrow e^+e^-)} \cong 12\%$

Dalitz plot with background subtracted and corrected for efficiency:

Recent Results on Charmonium Transitions

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi' \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$
- Multipole in $\psi' \rightarrow \gamma \chi_{c2}$

Property of h_c (1p1)

Observation of h_c at BESIII (inclusive)

> Select inclusive $\pi^0 (\psi' \rightarrow \pi^0 h_c)$

- Select E1-photon in $h_c \rightarrow \gamma \eta_c$ (E1 tagged) or not (E1 untagged)
- E1-tagged selection gives $M(h_c)=3525.40\pm0.13\pm0.18MeV$ $(\Delta M_{hf}(1P)=0.10\pm0.13\pm0.18MeV/c^2)$

 $\Gamma(h_c)=0.73\pm0.45\pm0.28MeV$ (first measurement) (<1.44MeV at 90% CL) Br(ψ'→π⁰h_c)×Br(h_c→γη_c)= (4.58±0.40±0.50)×10⁻⁴

> E1-untagged selection gives Br($\psi' \rightarrow \pi^0 h_c$) = (8.4±1.3±1.0) ×10⁻⁴

> Combining branching fractions leads to **Br(** $h_c \rightarrow \gamma \eta_c$ **) = (54.3 ± 6.7 ± 5.2)%** (first measurement)

Measurements of the h_c properties at BESIII (exclusive)

Simultaneous fit to π^0 recoiling mass: $M(h_c) = 3525.31 \pm 0.11 \pm 0.15$ MeV $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25$ MeV $N = 832 \pm 35$ $\chi^2/d.o.f. = 32/46$ *BESIII preliminary*

π⁰ recoil mass (GeV/c²)

 $\psi' \rightarrow \pi^0 h_C, h_C \rightarrow \gamma \eta_C,$ η_C is reconstructed exclusively with 16 decay modes

Summed π^0 recoil mass

Consistent with BESIII inclusive results PRL104,132002(2010) CLEOc exlusive results $M(h_c)=3525.21\pm0.27\pm0.14$ MeV/c² N = 136±14 PRL101, 182003(2008)

The η_c lineshape is not distorted in the $h_c \rightarrow \gamma \eta_c$, non-resonant bkg is small. This channel will be best suited to determine the η_c resonance parameters.

Recent Results on Charmonium Transitions

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi' \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$
- Multipole in $\psi' \rightarrow \gamma \chi_{c2}$

$\eta_c(1S)$

• Ground state of $c\overline{c}$ system, but its properties are not well known:

 J/ψ radiative transition: $M \sim 2978.0 \text{MeV}/c^2$, $\Gamma \sim 10 \text{MeV}$ $\gamma\gamma$ process: $M = 2983.1 \pm 1.0 \text{ MeV}/c^2$, $\Gamma = 31.3 \pm 1.9 \text{ MeV}$

- CLEOc found the distortion of the η_c lineshape in ψ' decays
- $c\overline{c}$ hyperfine splitting: M(J/ ψ)- M(η_c) is important experimental input to test the lattice QCD, but is dominated by error on M(η_c)

arXiv: 1111.0398 Accepted by PRL

$\psi' \rightarrow \gamma \eta_c$, η_c exclusive decays

Interference with non-resonant is significant !

Mass: 2984.3±0.6±0.6 MeV/c² Relative phase ϕ values from each mode are consistent within 3σ , \rightarrow use a common phase value in the φ: simultaneous fit.

width: 32.0±1.2±1.0 MeV 2.40±0.07±0.08 rad or 4.19 ±0.03±0.09 rad

Comparison of the mass and width for η_{c}

The world average in PDG2010 was using earlier measurements

Hyperfine splitting: $\Delta M(1S) = 112.6 \pm 0.8$ MeV

Consistent with B factory results in other production mechanisms. Agree with lattice QCD calculations of the charmonium hyperfine splitting

Recent Results on Charmonium Transitions

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi' \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$
- Multipole in $\psi' \rightarrow \gamma \chi_{c2}$

$\eta_c(2S)$

First "observation" by Crystal Ball in 1982 (M=3.592, B=0.2%-1.3% from $\psi' \rightarrow \gamma X$, never confirmed by other experiments.)

> Published results about $\eta_c(2S)$ observation:

Experiment	$M \; [MeV]$	$\Gamma [MeV]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar $[3]$	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$		$e^+e^- \rightarrow J/\psi c\bar{c}$
PDG[5]	3638 ± 4	14 ± 7	

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm 3$ MeV

> The M1 transition $\psi' \rightarrow \gamma \eta_c$ (25) has not been observed.

(experimental challenge : search for real photons ~50MeV,)

- > Better chance to observe $\eta_c(2S)$ in ψ' radiative transition with ~106M ψ' data at BESIII.
- > Decay mode studied: $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma Ks K\pi$ (K⁺K⁻ π^0 etc. in progress)

Observation of η_c (2S) in $\psi' \rightarrow \gamma \eta_c$ (2S), η_c (2S) $\rightarrow K_s K \pi$

Recent Results on Charmonium Transitions

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi' \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$
- Multipole in $\psi' \rightarrow \gamma \chi_{c2}$

$\psi' \rightarrow \gamma \gamma \mathbf{J}/\psi$

 Two photon transitions are well known in excitations of molecules, atomic hydrogen, and positronium.

[F. Bassani etal, PRL **39**, 1070 (1977); A. Quattropani etal, PRL **50**, 1258 (1983)]

- Never been observed in the quarkonium system. CLEOc: upper limit of $Br(\psi' \rightarrow \gamma\gamma J/\psi)$ is 1×10^{-3} (PRD 78,011102(2008))
- Observation helpful to understand heavy quarkonium spectrum & strong interaction

Theoretically:

- Potential models give discrete spectra $(\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi)$
- Possibility of testing the hadron-loop effect
- Coupled channel: the hadron-loop effect also may play a important role in the continuous spectra

arXiv: 1112.0942 Submit to PRL

First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$

• Select $\psi(2S) \rightarrow \gamma \gamma J/\psi$, $J/\psi \rightarrow e^+e^-$ and $\mu^+\mu^-$ events

- Global fit of the two-photon process and cascade χ_{cJ} processes
- See **clear excess** over BG + continuum
- $Br(\psi' \to \gamma \gamma J/\psi) = (3.3 \pm 0.6^{+0.8}_{-1.1}) \times 10^{-4}$ (both *ee* and $\mu\mu$)
- Significance : 3.8 σ including systematics
- $Br(\psi' \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi)$ are also measured
- **Solution ee formula to the second state of the second state of**

Recent Results on Charmonium Transitions

- Properties of h_c
- Mass and width of η_c
- Observation of $\psi' \rightarrow \gamma \eta_c(2S)$
- First evidence of $\psi' \rightarrow \gamma \gamma J/\psi$
- Multipole in $\psi' \rightarrow \gamma \chi_{c2}$

Higher-order Multipole in $\psi' \rightarrow \gamma \chi_{c2}$, $\chi_{c2} \rightarrow \pi^+ \pi^-$, K⁺K⁻

Investigate the contribution from high-order multipole amplitudes

- $\psi' \rightarrow \gamma \chi_{c2}$ is dominated by electric dipole (E1) transition, but expect some magnetic quadrupole component (M2).
- M2 amplitude provides sensitivity to charm quark anomalous magnetic moment κ : M2 = 0.029(1 + κ)
- Use large clean samples of $\chi_{c2} \rightarrow \pi^+\pi^-$ and $\chi_{c2} \rightarrow K^+K^-$; χ_{c0} samples used as control since M2 = 0.

PRD84, 092006 (2011)

Higher-order Multipole in $\psi' \rightarrow \gamma \chi_{c2}$, $\chi_{c2} \rightarrow \pi^+ \pi^-$, K⁺K⁻

Recent Results on Charmonium Decays

- $\psi' \rightarrow \gamma \pi^0, \gamma \eta, \gamma \eta'$
- Search for $\eta_c(2S) \rightarrow VV$
- χ_{cJ} decays

$\psi' \rightarrow \gamma P(\pi^0, \eta, \eta')$, arise surprises

V $\rightarrow \gamma$ P are important tests for various mechanisms: Vector meson Dominance Model (VDM); Couplings & form factor; Mixing of η - η '(- η_c); FSR by light quarks; 12% rule and " $\rho \pi$ puzzle".

0.3

Mode	B(ψ') [x10 ⁻⁶]	B(J/ψ) [x10 ⁻⁴] (PDG)	Q (%)
γπ ⁰	1.58±0.42	0.35±0.03	4.5 ± 1.3
γη	1.38±0.49	11.04±0.34	0.13 ± 0.04
γη'	126±9	52.8±1.5	2.4 ± 0.2

 $R_{w'} = (1.10 \pm 0.38 \pm 0.07)\% << R_{J/w}$

Recent Results on Charmonium Decays

- $\psi' \rightarrow \gamma \pi^0, \gamma \eta, \gamma \eta'$
- Search for η_c (2S) \rightarrow VV
- χ_{cJ} decays

Search for $\eta_c(2S) \rightarrow VV$

Test for the 'intermediate charmed meson loops':

 $\eta_c(2S) \rightarrow VV$ is highly suppressed by the helicity selection rule. 'intermediate charmed meson loops' can increase the production rate of $\eta_c(2S) \rightarrow VV$.

No signals observed in $\eta_c(2S) \rightarrow \rho\rho$, $K^{*0}K^{*0}$, $\phi\phi$; more stringent UL's are set.

Recent Results on Charmonium Decays

- $\psi' \rightarrow \gamma \pi^0$, $\gamma \eta$, $\gamma \eta'$
- Search for $\eta_c(2S) \rightarrow VV$
- χ_{cJ} decays

χ_{cJ} study at BESIII

The χ_{cJ} decays provide good place to:

- Study gluonium: χ_c → gg → (qq)(qq)
 C. Amsler and F. E. Close, Phys. Rev. D 53, 295 (1996).
- Test the Color Octet Mechanism(COM)
 G. T. Bodwin *et al.*, Phys Rev. Lett. D51, 1125 (1995).
 H.-W. Huang and K.-T. Chao, Phys. Rev. D54, 6850 (1996).
 J. Bolz *et al.*, Eur. Phys. J. C 2, 705 (1998).
- First measurement of $\chi_{cJ} \rightarrow \omega \phi$, $\omega \omega$, $\phi \phi$
- First measurement of $\chi_{cJ} \rightarrow \gamma \phi$
- First measurement of $\chi_{cJ} \rightarrow p\overline{p}K^+K^-$

 $\chi_{cl} \rightarrow VV(V:\omega, \phi)$

Reconstruct $\phi \rightarrow K^+K^-, \pi^+\pi^-\pi^0$ $\omega \rightarrow \pi^+\pi^-\pi^0$

- $\chi_{cJ} \rightarrow \phi \phi$ and $\chi_{cJ} \rightarrow \omega \omega$ are Singly OZI suppressed
- $\chi_{c1} \rightarrow \phi \phi$ and $\chi_{c1} \rightarrow \omega \omega$ is suppressed by helicity selection rule.
- $\chi_{cJ} \rightarrow \phi \omega$ is doubly OZI suppressed, not measured yet

 $\chi_{cJ} \rightarrow VV$

intermediate meson loops. PRD81 014017 (2010) , PRD81 074006 (2010)

 $\chi_{cJ} \rightarrow \gamma V (V:\rho,\omega,\phi)$

Branching fractions for χ_{cJ} radiative decays to a vector meson (In units of 10^{-6})

BESIII	QCD+QED ³	QCD ³	pQCD ²	CLEO ¹	Mode
<10.5	2.0	3.2	1.2	< 9.6	$\chi_{c0} \to \gamma \rho^0$
228±13±22	42	41	14	243 ± 19 ± 22	$\chi_{c1} \to \gamma \rho^0$
<20.8	38	13	4.4	< 50	$\chi_{c2} \rightarrow \gamma \rho^0$
<12.9	0.22	0.35	0.13	< 8.8	$\chi_{c0} \to \gamma \omega$
69.7±7.2±6.6	4.7	4.6	1.6	$83 \pm 15 \pm 12$	$\chi_{c1} \to \gamma \omega$
<6.1	4.2	1.5	0.5	< 7.0	$\chi_{ m C2} ightarrow \gamma \omega$
<16.2	0.03	1.3	0.46	< 6.4	$\chi_{c0} \to \gamma \phi$
25.8±5.2±2.3	11	11	3.6	< 26	$\chi_{c1} \rightarrow \gamma \phi$
<8.1	6.5	3.3	1.1	< 13	$\chi_{\rm C2} ightarrow \gamma \phi$
otion	Eirot aboarvation				

First observation

prediction by pQCD much lower than experiment

Polarization of $\chi_{cJ} \rightarrow \gamma V (V:\rho,\omega,\phi)$

Longitudinal polarization (f_L) ; Transverse polarization (f_T) ; Helicity angle (θ)

Longitudinal polarization dominates, consistent with theoretical prediction

Z Phys. C 66, 71 (1995); Phys. Rev. 77, 242 (1950))

$\chi_{cJ} \rightarrow p\overline{p}K^{+}K^{-}$

- Test Color Octet Mechinasim (COM) theory
- Search for new χ_{cJ} decay mode

TABLE VII. Summary of branching fractions for 12 χ_{cJ} decay modes to $p\bar{p}K^+K^-$. The first errors are statistical, and the second ones are systematic. The upper limits are at the 90% C.L. including the systematic errors.

	χ_{c0}	χ_{c1}	X c2
$\mathcal{B}(\chi_{cJ} \rightarrow p \bar{p} K^+ K^-) \ (10^{-4})$	$1.24 \pm 0.20 \pm 0.18$	$1.35 \pm 0.15 \pm 0.19$	$2.08 \pm 0.19 \pm 0.30$
$\mathcal{B}(\chi_{cJ} \rightarrow \bar{p}K^+\Lambda(1520) + \text{c.c.}) (10^{-4})$	$3.00 \pm 0.58 \pm 0.50$	$1.81 \pm 0.38 \pm 0.28$	$3.06 \pm 0.50 \pm 0.54$
$\mathcal{B}(\chi_{cJ} \rightarrow \Lambda(1520)\bar{\Lambda}(1520)) \ (10^{-4})$	$3.18 \pm 1.11 \pm 0.53$	<1.00	$5.05 \pm 1.29 \pm 0.93$
$\mathcal{B}(\chi_{cJ} \to p \bar{p} \phi) \ (10^{-5})$	$6.12 \pm 1.18 \pm 0.86$	<1.82	$3.04 \pm 0.85 \pm 0.43$

First measurement

D analyses currently in progress

- D and Ds tagging
- $D^+ \rightarrow \mu^+ \nu$
- $D^0 \rightarrow K^-/\pi^- e^+ v$
- Search for $D^0 \rightarrow \gamma \gamma$

Open charm with BESIII – Stay tuned !

Use $\psi(3770) \rightarrow DD_{bar}$ to produce two quantum correlated D mesons:

 $@\psi(3770)$ with 420pb⁻¹ first clean single tagging sample:

 K^+

D

 π

m_{BC} of D_s Single Tags

(part of data @ 4010 MeV)

 f_{Ds} (both μ and τ modes) measurement underway

Note: this data is at 4010 MeV: ~ 0.3 nb of $D_s^+ D_s^-$

We plan to run at 4170 MeV: ~0.9 nb of $D_s^{*+}D_s^$ pro: higher cross-section; con: need D_s^* transition photon ($D_s^{*+} \rightarrow \gamma D_s^+$)

D analyses currently in progress

1. $D^+ \rightarrow \mu^+ \nu$ Measurement

2. $D^0 \rightarrow K^-/\pi^- e^+ \nu$ Measurement

3. Search for D^0 \rightarrow \gamma \gamma: the sensitivity will be 10^{-6}

Target for CHARM2012 as preliminary results

Summary

- > BESIII is successfully operating since 2008:
 - □ World largest data samples at J/ψ , ψ' , $\psi(3770)$, $\psi(4040)$ already collected, more data in future ($D_S^{*+}D_S^{-}$ at 4170 MeV coming soon).

> Light quark states:

- \Box confirmation the enhancement at $p\overline{p}$ threshold in $J/\psi \rightarrow \gamma p\overline{p}$, $J^{PC} = 0^{-+}$.
- \Box confirmation X(1835) with two new structures in $J/\psi \rightarrow \gamma \pi \pi \eta'$.
- \Box observation a new structure X(1870) in J/ $\psi \rightarrow \omega \pi \pi \eta$.
- □ First observation: $\eta(1405) \rightarrow f_0(980)\pi^0$ (isospin breaking).

> Charmonium transitions:

- \square Precision measurements of h_c and η_c (15) properties.
- □ first observation of $\eta_c(2S)$ in $\psi' \rightarrow \gamma \eta_c(2S)$ decay.
- $\Box \text{ First evidence of } \psi' \rightarrow \gamma \gamma J/\psi.$

> Charmonium decays:

□ First measurement of $\psi' \rightarrow \gamma \eta$ and $\gamma \pi^0$, $\chi_{cJ} \rightarrow \omega \phi$, $\omega \omega$, $\phi \phi$, $\gamma \phi$ and $p\overline{p}K^+K^-$.

> Charm decays:

precision open-charm D physics to come soon.

> Expect many more results from BESIII in the future!