Recent results on charmonium and light hadron spectroscopy at BESIII

Shan JIN For BESIII Collaboration

Institute of High Energy Physics

ICHEP2012, 4-11th July, Melbourne, Australia

Outline

- Introduction
- Study of h_c in $\psi(2S) \rightarrow \pi 0 h_c$
- Precise measurement of η_c mass and width
- Observation of η_{c} ' in $\psi' \rightarrow \gamma KK\pi$
- Spin-parity analysis of the ppbar mass threshold enhancement X(ppbar) in J/ ψ and ψ' radiative decays
- η (1405) in $J/\psi \to \gamma f_0(980)\pi^0, f_0(980) \to 2\pi$
- **PWA** of $J/\psi \rightarrow \gamma \eta \eta$ and $J/\psi \rightarrow \gamma \omega \phi$
- Summary

ICHEP2012

ICHEP2012

$\psi' \rightarrow \pi^0 h_c a BESIII$

ICHEP2012

ICHEP2012

$\eta_c(1S)$

• Ground state of $c\bar{c}$ system, but its properties are not well known: J/ψ radiative transition: $M \sim 2978.0 \text{MeV}/c^2$, $\Gamma \sim 10 \text{MeV}$ $\gamma\gamma$ process: $M = 2983.1 \pm 1.0 \text{ MeV}/c^2$, $\Gamma = 31.3 \pm 1.9 \text{ MeV}$

- CLEOc found the distortion of the η_c lineshape in ψ' decays
- $c\overline{c}$ hyperfine splitting: M(J/ ψ)- M(η_c) is important experimental input to test the lattice QCD, but is dominated by error on M(η_c)

Interference with non-resonant is significant !

Relative phase ϕ values from each mode are consistent within 3σ ,

→ use a common phase value in the simultaneous fit.

M: $2984.3 \pm 0.6 \pm 0.6$ MeV Γ : $32.0 \pm 1.2 \pm 1.0$ MeV ϕ : $2.40 \pm 0.07 \pm 0.08$ rad or $4.19 \pm 0.03 \pm 0.09$ rad

arXiv:1111:0398 PRL 108(2012)222002

ICHEP2012

Comparison of the mass and width for η_c

The world average in PDG2010 was using earlier measurements

Hyperfine splitting: $\Delta M(1S) = 112.6 \pm 0.8 \text{ MeV}$

Consistent with B factory results in other production mechanisms. Agree with lattice QCD calculations of the charmonium hyperfine splitting

ICHEP2012

Observation of $\psi' \rightarrow \gamma \eta_c(2S)$

- First "observation" by Crystal Ball in 1982 (M=3.592, B=0.2%-1.3% from $\psi' \rightarrow \gamma X$, never confirmed by other experiments.)
- > Published results about $\eta_c(2S)$ observation:

Experiment	$M [{ m MeV}]$	$\Gamma [MeV]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\top}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0\pm8.3\pm2.5$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$	-	$e^+e^- \rightarrow J/\psi c\bar{c}$
PDG [5]	3638 ± 4	14 ± 7	—

Combined with the results based on two-photon processes from BaBar and Belle reported at ICHEP 2010, the world average $\Gamma(\eta_c(2S))=12\pm3$ MeV

> The M1 transition $\psi' \rightarrow \gamma \eta_c$ (2S) has not been observed.

(experimental challenge : search for real photons ~50MeV,)

- > Better chance to observe $\eta_c(2S)$ in ψ' radiative transition with ~106M ψ' data at BESIII.
- > Decay mode studied: $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma KsK\pi \& K^+K^-\pi^0$

Observation of $\eta_c(2S)$ in $\psi' \rightarrow \gamma \eta_c(2S)$, $\eta_c(2S) \rightarrow K_s K \pi$, K⁺K⁻π⁰

simultaneous fit results:

 $\begin{array}{l} \textbf{M}(\eta_c(\textbf{2S})) = (3637.6 \pm 2.9 \pm 1.6) \; \textbf{MeV} \\ \Gamma(\eta_c(\textbf{2S})) = (16.9 \pm 6.4 \pm 4.8) \; \textbf{MeV} \\ \textbf{Statistical significance larger than } 10.2 \sigma! \end{array}$

Br(η_c(2S)→KKπ)=(1.9±0.4±1.1)% From BABAR(PRD78,012006)

CLEO-c: <7.6×10⁻⁴ PRD81,052002(2010)

Potential model: (0.1–6.2)×10⁻⁴ PRL89,162002(2002)

Enhancement at $p\overline{p}$ threshold in $J/\psi \rightarrow \gamma p\overline{p}$

Confirmed at BESIII in 2010 (CPC 34,421 (2010)) $M = 1859_{-13-26}^{+6}$ MeV, $\Gamma < 30$ MeV (90% CL)

Many possibilities:

normal meson/ pp bound state/multiquark/glueball/Final state interaction effect(FSI).....

Spin-parity analysis

is essential for determining place in the spectrum and possible nature.

PWA of $J/\psi \rightarrow \gamma p \overline{p}$ @BESIII

• PWA of J/ $\psi \rightarrow \gamma$ ppbar was first performed

- The fit with a BW and S-wave FSI(I=0) factor can well describe ppb mass threshold structure.
- It is much better than that without FSI effect, and $\triangle 2 \ln L = 51$ **(7.1***σ***)**
- Different FSI models→Model dependent uncertainty

 $J^{pc} = 0^+$

 $\Gamma = 13 \pm 20 (\text{stat})^{+11}_{-33} (\text{syst}) \pm 4 (\text{mod}) \text{MeV/c}^2 \text{ or } \Gamma < 76 \text{MeV/c}^2 @90\% C.L.$

 $B(J/\psi \rightarrow \gamma X(p\overline{p})) B(X(p\overline{p}) \rightarrow p\overline{p}) = (9.0^{+0.4}_{-1.1} (\text{stat})^{+1.5}_{-5.0} (\text{syst}) \pm 2.3 (\text{mod})) \times 10^{-5}$

ICHEP2012

M_{ppbar} threshold structure of $\psi' \rightarrow \gamma p \overline{p}$ @BESIII

ICHEP2012

Anomalous line shape of $f_0(980)$ in $J/\psi \rightarrow \gamma 3\pi$

much narrower than the world average (PDG 2010: 40-100 MeV/ c^2)

A possible explanation is KK* loop, Triangle Singularity (TS) (J.J. Wu et al, PRL 108, 081803(2012))

ICHEP2012

 $\textbf{a}_{0}\textbf{-}\textbf{f}_{0}$ mixing alone can not explain the branching ratio of $\eta(1405)$

ICHEP2012

New results on $\eta' \rightarrow 3\pi$

Comparison: Isospin violations in $\eta' \rightarrow \pi \pi \pi$:

$$\frac{BR(\eta' \to \pi^+ \pi^- \pi^0)}{BR(\eta' \to \pi^+ \pi^- \eta)} \approx 0.9\%, \quad \frac{BR(\eta' \to \pi^0 \pi^0 \pi^0)}{BR(\eta' \to \pi^0 \pi^0 \eta)} \approx 1.6\%$$

ICHEP2012

Study of nn system

- First observed f₀(1710) from J/ψ radiative decays to ηη by Crystal Ball in 1982.
- LQCD predicts:

0⁺⁺ : 1710 ± 50 ± 80

- Crystal Barrel Collaboration (2002) analyzed the three final states $\pi^0\pi^0\pi^0$, $\eta\pi^0\pi^0$ and $\pi^0\eta\eta$ with K matrix formalism. Found a 2⁺⁺ (~1870MeV), but no f₀(1710).
- E835 (2006): ppbar $\rightarrow \pi^{0}\eta\eta$, found f₀(1500) and f₀(1710).
- WA102 and GAMS all identified f_(1710) in $\eta\eta$.

ICHEP2012

Preliminary PWA results of J/ $\psi \rightarrow \gamma \eta \eta$ @BESIII

$M_{\omega\Phi}$ threshold enhancement in J/ $\psi \rightarrow \gamma \omega \Phi$

 $J/\psi \rightarrow \gamma \omega \phi$ (DOZI)

ICHEP2012

Preliminary PWA results of J/ $\psi \rightarrow \gamma \omega \Phi$ @BESIII

Resonance	\mathbf{J}^{PC}	${ m M(MeV/c^2)}$	$\Gamma({ m MeV}/c^2)$	Events	ΔS	Δndf	Significance
X (1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$> 30\sigma$
f ₂ (1950)	211	1944	472	<mark>665 ⊥ 40</mark>	211	2	$> 10\sigma$
f ₀ (2020)	0++	1992	442	715 ± 45	100	2	$> 10\sigma$
vy(2225)	0 '	2240	190	70 ± 30	23	2	6.40
phase space	0-+	2400	5000	319 ± 24	45	2	$> 8\sigma$

Is X(1810) the f0(1710)/f0(1790) or new state?

ICHEP2012

Summary

- A lot of interesting results on charmonium and light hadron spectroscopy have been obtained at BESIII, with new observations and measurements.
- BESIII just took 1 billion J/ψ events and 0.4 billion ψ' events this year →
 More and more exciting results from BESIII in the future

ICHEP2012

Property of h_c

- First evidence: E835 in pp→h_c→γη_c (PRD72,092004(2005))
- CLEO-c observed h_c in ee→ψ'→π⁰h_c, h_c→γη_c ΔM_{hf}(1P)=0.08±0.18±0.12 MeV/c² (PRL104,132002(2010))
- Study isospin forbidden transition:

 $B(\Psi' \rightarrow \pi^0 h_c)$

- Measure as well the E1 transition:

 $\Delta M_{hf}(1P)=M(h_c)-$ 1/9(M(χ_{c0})+3M(χ_{c1})+5M(χ_{c2}))

The η_c lineshape is not distorted in the $h_c \rightarrow \gamma \eta_c$, non-resonant bkg is small. This channel will be best suited to determine the η_c resonance parameters.

Is the X(1835) from the same source of X(ppbar)?

- The mass of X(ppbar) is consistent with X(1835)
- The width of X(ppbar) is much narrower.
 Possible reasons:
 - X(ppbar) and X(1835) come from different sources
 - Interference effect in J/ ψ -> $\gamma \pi \pi \eta$ ' process should not be ignored in the determination of the X(1835) mass and width
 - There may be more than one resonance in the mass peak around 1.83GeV in J/ ψ -> $\gamma \pi \pi \eta$ ' decays.

Confirmation @ BESIII and CLEOc

Fit with one resonance at BESII did:

Several non-observations

