Charmed Meson Leptonic and Hadronic decays at BESIII Dan Ambrose University of Minnesota CIPANP 2015 May 24, 2015 #### Overview - BESIII experiment - Leptonic decays - $D^+ \rightarrow \mu \nu$ - Semi-leptonic decays - $D^0 \rightarrow K(\pi)^- e^+ \nu$ - Measurement of Y_{CP} in $D^0\overline{D^0}$ oscillation - Hadronic decays - GGSZ strong-phase measurements for $D^0 \to K^0 \pi^+ \pi^-$ - More upcoming BESIII measurements - Summary #### **BEPCII** and **BESIII** #### **BESIII Detector** Drift Chamber (MDC) $\sigma_P/P=0.5\%$ @1 GeV $\sigma_{dE/dx}=6\%$ Time Of Flight (TOF) σ_T : 90 ps Barrel 110 ps endcap Super-conducting magnet (1.0 tesla) μ Counter 8- 9 layers RPC σ_E/E = 2.5%@1GeV σ_Z = 0.6cm EMC: M. Ablikim et al., (BESIII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010). # **BE**SIII #### Collaboration ## ψ(3770) Dataset $2.9 fb^{-1}$ is the largest set of at this type in the world by 3.6 times. $\psi(3770)$ excited $c\bar{c}$ state which decays primarily into a $D\bar{D}$ pair. The ability to fully reconstruct most events allows us to determine the presence of particles that don't interact in our detector(ν, K_L). $D\overline{D}$ pair created in a quantum-correlated state, unique compared to generic D decays. ### Single D Tagging #### Single Tagging Reconstruct particles from a single D decay. ### Double D Tagging Double Tagging reconstructs both D's Reconstructing both D's significantly removes background, however it is at the cost of statistics. Ability to reconstruct particles that don't decay in our detector (K_L^0, v) #### Leptonic decays SM prediction: $$\Gamma(D_{(s)}^+ o \ell^+ u_\ell) = rac{G_F^2 f_{D_{(s)}^+}^2}{8\pi} |V_{cd(s)}|^2 m_\ell^2 m_{D_{(s)}^+} \left(1 - rac{m_\ell^2}{m_{D_{(s)}^+}^2} ight)^2$$ Allows us to explore precision measurements of : - Decay constants $f_{D_{(s)}^+}$ using input from $|V_{cd(s)}|^{\text{CKMfitter}}$ - CKM matrix elements $|V_{cd(s)}|$ using input from $f^{LQCD}_{D_{(s)}^+}$ # Measurement of $\mathcal{B}(D^+ \to \mu^+ \nu_\mu)$, f_{D^+} and $|V_{cd}|$ $$M_{BC}[\text{GeV/c}^2] = \sqrt{E_{beam}^2 - |\vec{P}_{DRec}|^2}$$ #### 2.92 fb⁻¹ data@ 3.773 GeV $M_{miss}^2[\text{GeV}^2/\text{c}^4] = E_{miss}^2 - |\vec{p}_{miss}|^2$ $N_{D_{tog}} = (170.31 \pm 0.34) \times 10^4$ #### $B[D^+\rightarrow \mu^+\nu]=(3.71\pm0.19\pm0.06)\times10^{-4}$ Input t_{D+} , m_{D+} , $m_{\mu+}$ on PDG and $|V_{cd}|$ =0.22520 ±0.00065 from CKM-Fitter Input t_{D+} , m_{D+} , $m_{\mu+}$ on PDG and LQCD calculated f_{D+} =207±4 MeV[PRL100(2008)062002] $f_{D^+} = (203.2 \pm 5.3 \pm 1.8) \text{ MeV}$ $|V_{cd}| = 0.2210 \pm 0.0058 \pm 0.0047$ # Comparison of $\mathcal{B}(D^+ \to \mu^+ v_\mu)$ and f_{D^+} # Semi-leptonic decays: $D^0 \to K(\pi)^- e^+ v_\rho$ Differential Rates: $$\frac{d\Gamma(D \to K(\pi)e\nu)}{dq^2} = \frac{G_F^2 |V_{cs(d)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$ Allows us to explore precision measurements of: - Form factors $f_+^{D \to K(\pi)^-}(q^2)$ using input from $|V_{cs(d)}|^{\text{CKMfitter}}$ - Single pole form $$f_{+}(q^2) = \frac{f_{+}(0)}{1 - \frac{q^2}{M_{pole}^2}}$$ ISGW2 model $$f_{+}(q^{2}) = f_{+}(q_{max}^{2}) \left(1 + \frac{r_{ISGW2}^{2}}{12}(q_{max}^{2} - q^{2})\right)^{-2}$$ Modified pole model $$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{M_{pole}^{2}}\right) \left(1 - \alpha \frac{q^{2}}{M_{pole}^{2}}\right)}$$ - Series expansion model $$f_{+}(q^{2}) = f_{+}(q_{max}^{2}) \left(1 + \frac{r_{ISGW2}^{2}}{12} (q_{max}^{2} - q^{2}) \right)^{-2}$$ $$f_{+}(t) = \frac{1}{P(t)\Phi(t, t_{0})} a_{0}(t_{0}) \left(1 + \sum_{k=1}^{\infty} r_{k}(t_{0})[z(t, t_{0})]^{k} \right)$$ CKM matrix elements $|V_{cs(d)}|$ using input from $f^{LQCD}_{n^0}$ #### Measurement of $\mathcal{B}(D^0 \to K(\pi)^- e^+ v_e)$ #### Comparison of $\mathcal{B}(D^0 \to K(\pi)^- e^+ v_e)$ 5/24/2015 $\Gamma (\pi e^+ v) / \Gamma_{total}$ $(0.279\pm0.027\pm0.016)\%$ (0.288±0.008±0.003)% $(0.2950\pm0.0041\pm0.0026)\%$ BESIII Preliminary $(0.2770\pm0.0068\pm0.0099)\%$ Babar PRD91(2015)052022 BELLE CLEO-c #### Extracted Parameters of Form Factors # Measurement of $f_+^{K(\pi)}(q^2)$ #### **Experimental data calibrate LQCD calculation** #### Improved Form Factor at q=0 #### Input |V_{cs(d)}| from CKM-Fitter ### Improved $|V_{cs(d)}|$ at BESIII ■ Method 1 $B[D_{(s)}^{+} \rightarrow l^{+}\nu]$ Input t_{D+} , m_{D+} , $m_{\mu+}$ on PDG and LQCD calculated $f_{D(s)+}$ ■ Method 2 $f^{D\rightarrow K(\pi)}_{+}(0)|V_{cs(d)}|$ ## Definition of Y_{CP} in D⁰D⁰ oscillation Oscillations in $D^0\overline{D^0}$ system are characterized by two mixing parameters $$x = \Delta m / \Gamma$$ $$y = \Delta \Gamma / 2\Gamma$$ Where Δm and $\Delta \Gamma$ are the mass and width differences between the two mass eigenstates $$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D^0}\rangle$$ $\phi = \arg(p/q)$ The D meson's CP eigenstates can be written as $$|D_{CP\pm}\rangle = \frac{|D^0\rangle \pm |\overline{D^0}\rangle}{\sqrt{2}}$$ Allowing for small indirect CPV, the y parameter of the CP eigenstates becomes $$y_{cp} = \frac{1}{2} \left[y \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) - x \sin \phi \left(\left| \frac{q}{p} \right| - \left| \frac{p}{q} \right| \right) \right]$$ In absence of CPV: • $$y_{cp} = y$$ • $$y_{cp} = y$$ • $\left|\frac{q}{p}\right| = 1$ • $$\phi = 0$$ #### Using Semi-leptonic decays to measure Y_{CP} $\overline{D^0}$ in CP eigenstate, $\overline{D^0}$ must be in opposite CP eigenstate Total decay width of CP eigenstates: $$\Gamma_{CP\pm} = \Gamma(1 \mp y_{CP})$$ Semi-leptonic $(D \to l)$ decay width is only sensitive to flavor content Therefore, Semi-leptonic decay from a CP eigenstate $$\mathcal{B}_{D_{CP\pm}\to l} \approx \mathcal{B}_{D\to l} (1 \mp y_{CP})$$ $$\therefore y_{CP} \approx \frac{1}{4} \left(\frac{\mathcal{B}_{D_{CP-}\to l}}{\mathcal{B}_{D_{CP+}\to l}} - \frac{\mathcal{B}_{D_{CP+}\to l}}{\mathcal{B}_{D_{CP-}\to l}} \right)$$ This can be obtained through Single and double tag yields and efficiencies $$\mathcal{B}_{D_{CP}\mp\to l} = \frac{N_{CP\pm;l}}{N_{CP\pm}} \cdot \frac{\varepsilon_{CP\pm;l}}{\varepsilon_{CP\pm;l}}$$ ## Y_{CP} Results $$\mathcal{B}_{D_{CP}\mp \to l} = \frac{N_{CP\pm;l}}{N_{CP\pm}} \cdot \frac{\varepsilon_{CP\pm}}{\varepsilon_{CP\pm;l}}$$ Branching ratios of Kev and $K\mu v$ are combined to get $\mathcal{B}_{D_{CP}\mp \to l}$ Results are combined from different CP modes into a global fit using standard weighted least-square method. #### Result: $$y_{cp} = (-2.0 \pm 1.3_{\text{(stat)}} \pm 0.7_{\text{(sys)}})\%$$ Phys.Lett.B 744(2015) 339-346 *Edited to compare with BESIII result **BESIII not included in world average # $D^0 \to K_S^0 \pi^+ \pi^-$ Strong-Phase Parameters Measuring the Dalitz binned strong-phase difference between D⁰ and $\overline{\rm D^0} \to K_S^0 \pi^+ \pi^-$ This measurement is important for reducing the systematic/model uncertainty of the measurement of the CKM UT angle γ done at the B factories using the GGSZ method. ### CKM UT angle γ measurement $$\frac{\langle B^- \longrightarrow \overline{D}^0 K^- \rangle}{\langle B^- \longrightarrow D^0 K^- \rangle} = r_B e^{i(\delta_B - \gamma)}$$ Determine γ through the measurement of the interference between b \rightarrow c and b \rightarrow u transitions when D^0 and \overline{D}^0 both decay to the same final state f(D). ### GGSZ method of measuring γ #### Binned decay rate: $$\Gamma(B^{\pm} \to D(K_S \pi^+ \pi^-) K^{\pm})_i = T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \cos(\delta_B \pm \gamma - \Delta \delta_D)$$ = $T_i + r_B^2 T_{-i} + 2r_B \sqrt{T_i T_{-i}} \{ c_i \cos(\delta_B \pm \gamma) + s_i \sin(\delta_B \pm \gamma) \}$ Distribution sensitive to variables: T_i : Bin yield measured in flavor decays r_B : color suppression factor ~ 0.1 δ_B : strong phase of B decay c_i, s_i : weighted average of $\cos(\Delta \delta_D)$ and $\sin(\Delta \delta_D)$ respectively where $\Delta \delta_D$ is the difference between phase of D^0 and \overline{D}^0 Mirrored binning over x=y makes it so $c_i = c_{-i}$ and $s_i = -s_{-i}$ T_i , r_B , δ_B are measured at B-Factories c_i and s_i can be found through $K_s \pi^+ \pi^-$ Analysis #### Calculation of strong phase parameters It can be shown that the strong phase parameters can be determined through yields and efficiencies of ST and DT modes. # $K_S^0 \pi^+ \pi^-$ vs CP tags ### Strong-phase parameters results **BESIII Preliminary** | | c_i | | s_i | | |------|--------------------|--------------------|--------------------|--------------------| | Bins | BES-III | CLEO-c | BES-III | CLEO-c | | 1 | 0.066 ± 0.066 | -0.009 ± 0.088 | -0.843 ± 0.119 | -0.438 ± 0.184 | | 2 | 0.796 ± 0.061 | 0.900 ± 0.106 | -0.357 ± 0.148 | -0.490 ± 0.295 | | 3 | 0.361 ± 0.125 | 0.292 ± 0.168 | -0.962 ± 0.258 | -1.243 ± 0.341 | | 4 | -0.985 ± 0.017 | -0.890 ± 0.041 | -0.090 ± 0.093 | -0.119 ± 0.141 | | 5 | -0.278 ± 0.056 | -0.208 ± 0.085 | 0.778 ± 0.092 | 0.853 ± 0.123 | | 6 | 0.267 ± 0.119 | 0.258 ± 0.155 | 0.635 ± 0.293 | 0.984 ± 0.357 | | 7 | 0.902 ± 0.017 | 0.869 ± 0.034 | -0.018 ± 0.103 | -0.041 ± 0.132 | | 8 | 0.888 ± 0.036 | 0.798 ± 0.070 | -0.301 ± 0.140 | -0.107 ± 0.240 | - •Reduction in the c_i s_i contribution to the uncertainty in γ of ~40% - Improved statistics from B factories could place uncertainty from the $c_i \ s_i$ contribution at ~1% CLEO-c result: Phys. Rev. D 82, 112006 ## More Upcoming Analysis #### Leptonic: • $D_s^+ \rightarrow l^+ \nu$ analysis #### Semi-leptonic: - $D^+ \rightarrow K_L e^+ \nu$ - $D^+ \rightarrow (\omega, \phi) e^+ \nu$ - $D^+ \to K^- \pi^+ e^+ \nu$ #### **Hadronic:** - Dalitz analysis KsKK - $D_S^+ \to \eta' X$ and $D_S^+ \to \eta' \rho^+$ - $\sigma(e^+e^+ \rightarrow D\overline{D})$ at $E_{cm} = 3.773 \text{ GeV}$ - $\sigma(e^+e^+ \to D\overline{D})$ Line shape near $E_{cm} = 3.773$ GeV #### Summary Through the leptonic decay of $D^+ \to \mu^+ v_\mu$ and the semi-leptonic decay $D^0 \to K(\pi)^- e^+ v_e$, we have obtained improved measurements of decay constant f_{D^+} and form factors $f_+^{D\to K(\pi)}(q^2)$, which are important to test and calibrate LQCD calculations accurately. Leptonic and semi-leptonic decays improved measurements of CKM matrix elements, which are important for unitarity test of the CKM matrix. Measurement of y_{CP} , the mixing parameter in $D^0\overline{D^0}$ oscillation, is a competitive measurement which takes advantage of the quantum correlation of the $\psi(3770)$ dataset. Measurement of parameters of the strong-phase difference between D⁰ and $\overline{\rm D^0} \to K_S^0 \pi^+ \pi^-$, which are important for reducing systematics in CKM UT angle γ measurements. Many more BESIII analysis are on their way and we look forward to sharing our results. # $K_S^0 \pi^+ \pi^-$ Calculation of c_i , s_i For CP tag vs $K_S^0\pi^+\pi^-$, we are able to find c_i $$M_i^{\pm} = \frac{S_{\pm}}{2S_f} (K_i \pm 2c_i \sqrt{K_i K_{-i}} + K_{-i})$$ $M_i^+(M_i^-)$ yields in each bin of Dalitz plot for CP even(odd) modes. $S_{+}(S_{-})$ number of single tags for CP even(odd) modes. S_f number of single tags for flavor modes. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes. #### From the Double Dalitz modes, we are able to find c_i , s_i $$M_{i,j} = \frac{N_{D,\overline{D}}}{2S_f^2} \left(K_i K_{-j} + K_{-i} K_j - 2 \sqrt{K_i K_{-j} K_{-i} K_j} (c_i c_j + s_i s_j) \right)$$ $M_{i,j}$ yields in bin i of first Dalitz plot and bin j of second Dalitz plot. S_f number of single tags for flavor modes. $N_{D,\overline{D}}$ total number of $D^0\overline{D}{}^0$ events. $K_i(K_{-i})$, yields in each bin of Dalitz plot in flavor modes. # $K_L^0 \pi^+ \pi^-$ Calculation of c_i , c'_i , s_i , s'_i For CP tag vs $K_L^0 \pi^+ \pi^-$, we are able to find c'_i ' indicates numbers from $K_L \pi^+ \pi^-$ decays $$M'_{i}^{\pm} = \frac{S_{\pm}}{2S_{f}} \left(K'_{i} \mp 2c'_{i} \sqrt{K'_{i}K'_{-i}} + K'_{-i} \right)$$ $M'_{i}^{+}(M'_{i}^{-})$ yields in each bin of Dalitz plot for CP even(odd) modes. $S_{+}(S_{-})$ number of single tags for CP even(odd) modes. S_f number of single tags for flavor modes. $K'_{i}(K'_{\bar{i}})$, yields in each bin of Dalitz plot in flavor modes. #### From the Double Dalitz modes, we are able to find c_i , c'_i , s_i , s'_i $$M'_{i,j} = \frac{N_{D,\overline{D}}}{2S_f^2} \left(K_i K'_{-j} + K_{-i} K'_j + 2 \sqrt{K_i K'_{-j} K_{-i} K'_j} (c_i c'_j + s_i s'_j) \right)$$ ${ m i}^{ m th}$ bin for $K_S^0\pi^+\pi^ { m j}^{ m th}$ bin for $K_L^0\pi^+\pi^-$ $M_{i,j}$ yields in bin i of $K_S^0 \pi^+ \pi^-$ Dalitz plot and bin j of $K_L^0 \pi^+ \pi^-$ Dalitz plot. S_f number of single tags for flavor modes. $N_{D,\overline{D}}$ total number of $D^0\overline{D}{}^0$ events. $K_i(K_{-i})$, yields in each bin of $K_s^0 \pi^+ \pi^-$ Dalitz plot in flavor modes. $K'_{j}(K'_{-j})$, yields in each bin of $K_{L}^{0}\pi^{+}\pi^{-}$ Dalitz plot in flavor modes.