International Workshop on using Heavy Flavors to Probe New Hadron Spectroscopies/Dynamics ## Recent Results of Light Hadron Spectra at BESIII (X(1835), X(1870), ...) Yingchun Zhu (USTC, China) for the BESIII Collaboration November 18-21, 2012 Haeundae Grand Hotel, Busan, South Korea ## Outline #### ♦ Status of BEPCII / BESIII - ♦ Recent Results on Light Hadron Spectroscopy - \bullet pp mass threshold structure in J/ ψ and ψ radiative decays - X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$ - A new structure X(1870) in $J/\psi \rightarrow \omega \eta \pi^+ \pi^-$ - η (1405) in J/ $\psi \to \gamma X$, $X \to f_0(980)\pi^0$, $f_0(980) \to \pi\pi$ - PWA of $J/\psi \rightarrow \gamma \eta \eta$ - PWA of $J/\psi \rightarrow \gamma \omega \phi$ - N* states in $\psi' \rightarrow p\bar{p}\pi^0$ and $\psi' \rightarrow p\bar{p}\eta$ ## Summary ## General layout of BEPCII/BESIII 2004: start BEPCII construction 2008: test run of BEPCII 2009-now: BEPCII/BESIII data taking ## Double storage rings Beam energy: 1.0 - 2.3 GeVDesigned lumi.: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$ (*Peak Lumi*.: 0.65×10^{33} cm⁻²s⁻¹) Optimum energy: 1.89 GeV Energy spread: 5.16×10^{-4} No. of bunches: 93 Bunch length: 1.5 cm Total current: 0.91 A Circumference: 237 m ## The BESIII Detector NIM A614:345-399,2010 > The detector is hermetic for neutral and charged particles with excellent resolution, PID, and large coverage. ## J/ψ and ψ' data samples #### So far BESIII has collected: **2009:** 225 Million J/ ψ (4 times of BESII) 106 Million ψ ' (4 times of CLEOc) 2012: 1 Billion J/ψ 0.4 Billion ψ' The following results are based on the data samples of 225M J/ ψ and 106M ψ' events. ## Hadron Spectroscopy - > The ultimate goal of the study of hadron spectroscopy is to understand the dynamics of the constituent interactions. - PQCD is not applicable in the light hadron sector. There exist phenomenological approaches and LQCD calculations. - > Experimental data will provide necessary constrains on the parameters introduced by the theory. #### New forms of hadrons Conventionally we know: mesons (qq) and baryons (qqq) - But many more forms which are QCD allowed, namely - * Multi-quark states: number of quarks ≥ 4 - * Hybrid states: qq g, qqqg, ... - * Glueballs: gg, ggg, ··· ## Observed an enhancement at pp mass threshold @ BESII - \succ M and Γ are not consistent with the properties of any known particle. - > Consistent with spin zero expectation. - Theoretical interpretations: Conventional mesons / pp̄ bound state / multiquarks / glueball Final state interaction (FSI) ······ 7 ### Confirmed @ BESIII and CLEOc $\psi' \rightarrow \pi^{+}\pi^{-}J/\psi$ (J/ $\psi \rightarrow \gamma$ p \bar{p}) (106M ψ' events) M=1861 $$^{+6}_{-13}^{+7}_{-26}$$ MeV/c² Γ < 38 MeV/c² (90% CL) - > Same fit method as that of BESII. - Consistent with BESII results. Chinese Physics C34(4) 421, (2010) - ♦ Not observed in B-meson decay, $\psi' \rightarrow \gamma$ pp, $\Upsilon \rightarrow \gamma$ pp, J/ $\psi \rightarrow \omega$ pp at BESII, $\psi' \rightarrow \chi$ pp (X= γ , π^0 , η) at CLEOc. The enhancement is not pure FSI effect. $\psi' \rightarrow \pi^+\pi^-J/\psi \ (J/\psi \rightarrow \gamma \ p\bar{p})$ (24.5M ψ' events) Fit region $\Delta m = 0.970 \text{ MeV}$ Consider X(2100): $$M = 1837^{+10}_{-12}^{+9}_{-7} \text{ MeV/c}^2$$ $\Gamma = 0^{+44}_{-0} \text{ MeV/c}^2$ Fit region $\Delta m = 0-300 \text{ MeV}$ Do not consider X(2100): $$M = 1861^{+16}_{-6} \text{ (stat) MeV/c}^2$$ $\Gamma = 0^{+32}_{-0} \text{ (stat) MeV/c}^2$ PRD 82, 092002 (2010) ## PWA of $J/\psi \rightarrow \gamma p\bar{p}$ @ BESIII First performed. PRL 108, 112003 (2012) Four components: $X(p\bar{p})$, $f_2(1910)$, $f_0(2100)$ and $0^{++}PS$ - The FSI effect considered. - > Fit features: - The fit with a BW and S-wave FSI (I=0) factor can well describe pp mass threshold structure. - Much better than that w/o FSI effect, $\Delta lnL = 51$ (7.1 σ). - Different FSI model → Model dependent uncertainty #### Results: 50 $$J^{pc} = 0^{-+}$$ #### >6.8σ better than other J^{pc} assignments $$M = 1832_{-5}^{+19} (stat)_{-17}^{+18} (syst) \pm 19 (mod) MeV/c^2$$ -100 50 $$\Gamma = 13 \pm 20 \text{ (stat)}_{-33}^{+11} \text{ (syst)} \pm 4 \text{ (mod)} \text{MeV/c}^2 \text{ or } \Gamma < 76 \text{MeV/c}^2 \text{ @ } 90\% \text{ C.L.}$$ 100 $$B(J/\psi \to \gamma X(p\overline{p}))B(X(p\overline{p}) \to p\overline{p}) = (9.0^{+0.4}_{-1.1}(\text{stat})^{+1.5}_{-5.0}(\text{syst}) \pm 2.3(\text{mod})) \times 10^{-5}$$ ## Structure at pp mass threshold of $\psi' \rightarrow \gamma pp$ @ BESIII - Observed a pp̄ mass threshold excess relative to PS. Line shape of pp̄ mass spectrum - Line shape of pp̄ mass spectrum near threshold looks obviously differ. from that of J/ψ decays. - No evident enhancement exist in pp̄ threshold in Dalitz plot. #### **PWA Results:** - > Significance of $X(p\bar{p})$ is > 6.9 σ . - The production ratio R: $$R = \frac{B(\psi' \to \gamma X(p\overline{p}))}{B(J/\psi \to \gamma X(p\overline{p}))}$$ = $(5.08^{+0.71}_{-0.45}(\text{stat})^{+0.67}_{-3.58}(\text{syst}) \pm 0.12(\text{mod}))\%$ It is suppressed compared with "12% rule". #### PWA fit projection PRL 108, 112003 (2012) ## X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^-$ $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^- (\eta^- \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma \text{ and } \eta^- \rightarrow \gamma \rho, \rho \rightarrow \pi^+ \pi^-)$ #### ♦ BESII Results: PRL 95, 262001 (2005) - $*M = 1833.7\pm6.1(stat)\pm2.7(syst) MeV/c^2$ - * $\Gamma = 67.7 \pm 20.3 \text{(stat)} \pm 7.7 \text{(syst)} \text{ MeV/c}^2$ - * $B(J/\psi \to \gamma X(1835)) \cdot B(X(1835) \to \pi^+\pi^-\eta')$ = $(2.2\pm0.4(stat)\pm0.4(syst)) \times 10^{-4}$ - * Statistical Significance 7.70 #### ♦ BESIII Results: PRL 106, 072002 (2011) | Resonance | M(MeV/c²) | Γ(MeV/c²) | Stat.Sig. | |-----------|--------------------------------------------|-----------------------------|-----------| | X(1835) | $1836.5 \pm 3.0^{+5.6}_{-2.1}$ | $190.1 \pm 9.0^{+38}_{-36}$ | >20σ | | X(2120) | $2122.4 \pm 6.7^{+4.7}_{-2.7}$ | $83 \pm 16^{+31}_{-11}$ | 7.2σ | | X(2370) | 2376.3±8.7 ^{+3.2} _{-4.3} | 83±17 ⁺⁴⁴ -6 | 6.4σ | | | | | | - * $B(J/\psi \to \gamma X(1835)) \cdot B(X(1835) \to \pi^+ \pi^- \eta') =$ $(2.87 \pm 0.09(stat)^{+0.49}_{-0.52}(syst)) \times 10^{-4}$ - * For X(1835), the angular distribution of the radiative photon is consistent with 0^{-+} assignment. (> 20σ) PWA is needed to understand their properties! ## What's the nature of X(1835), X(2120) and X(2370)? - > X(1835) observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^-$ - The measured width at BESIII is larger than that from BESII. - * Observed $p\bar{p}$ sub-threshold enhancement X(1860) in $J/\psi \to \gamma p\bar{p}$ at BESII and confirmed at BESIII and CLEOc. - * Are the X(1835) and X($p\bar{p}$) the same resonant state? - * $p\bar{p}$ bound state? glueball? η' excited state? Still remain unclear at present! - > X(2120) / X(2370) observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$ - The first time resonant structures are observed at ~2.1 and 2.4GeV. Interesting since: - * LQCD predicts the lowest 0⁻⁺ glueballs at~2.4GeV. - * A good channel for finding 0⁻⁺ glueballs. - Their nature: pseudoscalar glueball? η/η' excited states? - \triangleright A PWA is needed to measure their J^{PC} , M and Γ more precisely, and planned with much higher statistics J/ψ data sample. ## X(1870) in J/ $\psi \to \omega X$, X $\to a_0^{\pm}$ (980) π^{\mp} , a_0^{\pm} (980) $\to \eta \pi^{\pm}$ A study of $J/\psi \rightarrow \omega \eta \pi^{+}\pi^{-}$ at BESIII PRL 107, 182001 (2011) #### M, Γ , and B(J/ $\psi \rightarrow \omega X$) \cdot B($X \rightarrow a_0 \pi$) \cdot B($a_0 \rightarrow \eta \pi$) | | | | | <u>-</u> | |--------------|--------------------------------|------------------------------|-----------------------------------|------------------| | Resonance | ${\rm Mass}~({\rm MeV}/c^2)$ | Width $({\rm MeV}/c^2)$ | \mathcal{B} (10 ⁻⁴) | Stat.Sig. | | $f_1(1285)$ | $1285.1 \pm 1.0^{+1.6}_{-0.3}$ | $22.0 \pm 3.1^{+2.0}_{-1.5}$ | $1.25 \pm 0.10^{+0.19}_{-0.20}$ | > 10 σ | | $\eta(1405)$ | $1399.8 \pm 2.2^{+2.8}_{-0.1}$ | $52.8 \pm 7.6^{+0.1}_{-7.6}$ | $1.89 \pm 0.21^{+0.21}_{-0.23}$ | > 10 σ | | X(1870) | $1877.3 \pm 6.3^{+3.4}_{-7.4}$ | $57 \pm 12^{+19}_{-4}$ | $1.50 \pm 0.26^{+0.72}_{-0.36}$ | 7.2 σ | Is X(1870) due to X(1835), η_2 (1870), an interference of both, or a new resonance ? J^{PC} ? Need PWA! ## η(1405) in $J/\psi \rightarrow \gamma X$, $X \rightarrow f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$ First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$ PRL 108, 182001 (2012) - Evidence for an enhancement at ~ 1.3GeV (potentially from $f_1(1285)/\eta(1295)$) - ♦ Analysis of angular distribution indicates the peak at 1.4GeV is from $\eta(1405)$ (J^P =0 -), not from $f_1(1420)$ (J^P=1+). Stat. sig. > 10 σ . - Large Isospin-violating decay rate: $$\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0(980)\pi^0 \to \pi^0\pi^0\eta)} \approx (17.9 \pm 4.2)\%$$ ♦ In general, magnitude of isospin violation in strong decay should be <1%.</p> PRD 83,032003 (2011) $$\xi_{af} = \frac{Br(\chi_{c1} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\chi_{c1} \to a_0(980)\pi^0 \to \eta\pi^0\pi^0)} < 1\%(90\% C.L.)$$ a_0 - f_0 mixing alone can not explain the branching ratio of $\eta(1405) \rightarrow f_0(980) \pi_0^0$ • Anomalous line shape of $f_0(980)$ in $J/\psi \rightarrow \gamma 3\pi$ Surprising The measured width of f_0 (980) is much narrower than the world average (PDG 2012: 40-100 MeV/ c^2) ♦ Triangle Singularity (TS) mechanism * K*K in TS mechanism is on-shell. - * TS is much more dominant than $a_0 f_0$ mixing term. - Explains the large isospin violations in $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$. - Predicts a narrow peak at $M(\pi^+\pi^-)\sim 980$ MeV. ## Study of $\eta\eta$ system - ◆ LQCD predicts the lowest glueball state is 0⁺⁺ with M~1.5 -1.7GeV, the next lightest glueball is 2⁺⁺ with M~2.3 GeV. - ♦ The mixing of glueball with nearby qq meson makes the situation more difficult. Glueball spectrum from unquenched LQCD calculations. $r_0^{-1} = 410 \text{ MeV}$ • Early study of $J/\psi \rightarrow \gamma \eta \eta$ was made by Crystal Ball in 1982. Found J^{PC} of the resonance ~ 1.7GeV is 2^{++} . #### Other experiments: - Crystal ball Collaboration (2002) analyzed the final states of $\pi^0\pi^0\pi^0$, $\eta\pi^0\pi^0$ and $\pi^0\eta\eta$, found a 2⁺⁺ (~1870MeV), but no f₀(1710). - E835(2006): ppbar $\to \pi^0 \eta \eta$, found $f_0(1500)$ and $f_0(1710)$. - WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$. ## Preliminary PWA results of J/ψ-γηη @ BESIII For $J/\psi \rightarrow \gamma PP$ (Pseudoscalars), only intermediate states with J^{PC} =even⁺⁺ are possible. ♦ 0⁺⁺: $f_0(1500)(8.2 \,\sigma)$, $f_0(1710)(25 \,\sigma)$, $f_0(2100)(13.9 \,\sigma)$, 0⁺⁺ PS • 2^{++} : $f_2/(1525)(11\sigma)$, $f_2(1810)/f_2(1950)(6.4\sigma)$ \bullet 4⁺⁺: $f_4(2340)(7.6 \sigma)$ | Resonance | $\mathrm{Mass}(\mathrm{MeV}/c^2)$ | $Width(MeV/c^2)$ | $\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$ | Significance | |-----------------------|-----------------------------------|---------------------------|---------------------------------------------------------|-----------------| | $f_0(1500)$ | 1468^{+14+23}_{-15-74} | $136^{+41+28}_{-26-100}$ | $(1.61^{+0.29+0.49}_{-0.32-1.37}) \times 10^{-5}$ | 8.2σ | | $f_0(1710)$ | 1759^{+6+15}_{-6-25} | 172^{+10+32}_{-10-16} | $(2.35^{+0.07+1.24}_{-0.07-0.74})\times10^{-4}$ | $25.0 \ \sigma$ | | $f_0(2100)$ | 2081_{-13-36}^{+13+24} | 273^{+27+70}_{-24-23} | $(9.99^{+0.57+5.64}_{-0.52-2.46})\times10^{-5}$ | 13.9σ | | $f_2^{\prime}(1525)$ | 1513^{+5+4}_{-5-10} | 75^{+12+14}_{-10-8} | $(3.41^{+0.43+1.37}_{-0.50-1.29}) \times 10^{-5}$ | $11.0 \ \sigma$ | | $f_2(1810)/f_2(1950)$ | 1822^{+29+66}_{-24-57} | $229^{+52+88}_{-42-155}$ | $(5.38^{+0.60+3.41}_{-0.67-2.34}) \times 10^{-5}$ | 6.4σ | | $f_2(2340)$ | $2362^{+31+140}_{-30-63}$ | $334^{+62+165}_{-54-100}$ | $(5.58^{+0.61}_{-0.65}^{+2.36}) \times 10^{-5}$ | 7.6σ | ## $M_{\omega,\phi}$ threshold enhancement in $J/\psi \rightarrow \gamma \omega, \phi$ @ BESII #### **PWA Results @ BESII:** - $Φ M = 1812^{+19}_{-26} \pm 18 \text{ MeV/c}^2;$ $\Gamma = 105\pm20\pm28 \text{ MeV/c}^2$ $B(J/\psi \rightarrow \gamma X) \cdot B(X \rightarrow \omega \phi) = (2.61\pm0.27\pm0.65) \times 10^{-4}$ - ♦ The enhancement favors $J^{PC} = 0^{++}$ over 0^{-+} and 2^{++} , stat. sig.>10 σ . - Not compatible with any known conventional state. Is it the same 0^{++} observed in $\gamma K\bar{K}$ or $\phi \pi\pi$ ($f_0(1710)$ or $f_0(1790)$), or is it a glueball, or a hybrid ## Preliminary PWA results of $J/\psi \rightarrow \gamma \omega \phi$ @ BESIII - ♦ For X(1810): M, Γ and Br are consistent with that of BESII results. Confirms that the J^{PC} is O^{++} with stat. sig. of > O^{++} Not compatible to X(1835) and X(pp̄) due to diff. M and J^{PC}. - Is X(1810) the $f_0(1710)/f_0(1790)$ or a new state? Further looking in diff. decay modes ($\omega\omega$, K*K*...) and diff. production processes ($J/\psi \rightarrow \phi \omega \phi$, $\omega \omega \phi$...) is desirable! ## Observation of two new N* in $\psi' \rightarrow p\bar{p} \pi^0$ @ BESIII - ♦ Non-relativistic quark model is successful in interpreting the excited baryons. - ◆ Predicted more excited states ("missing resonance problem"). $M_{n\pi^0}(GeV/c^2)$ vents/(32 MeV/c2 - \triangleright Events with $p\bar{p}$ arising from J/ψ are excluded. - The threshold enhancement in pp mass spectrum is visible. - N* with spin 7/2 or larger is not considered. arXiv:1207.0233 #### **PWA Results:** - Soft-pion theory indicates that the off-shell decay is needed. N(940) with M=940MeV and $\Gamma=0$ MeV is included in PWA. - ♦ A 1⁻⁻ pp̄ resonance candidate described by BW function is tested. The largest sig. is 4σ at M=2000MeV and $\Gamma=50$ MeV. The threshold enhancement most likely due to interference of N* resonances. - \bullet No clear evidence for N(1885)/N(2065). - Two new N* resonances N(2300) and N(2570) are observed with 1/2+ and 5/2⁻. | Resonance | $M(MeV/c^2)$ | $\Gamma({ m MeV}/c^2)$ | ΔS | ΔN_{dof} | Sig. | |-----------|--------------------------------|---------------------------------|------------|------------------|--------------| | N(1440) | $1390^{+11}_{-21}^{+21}_{-30}$ | $340^{+46}_{-40}^{+70}_{-156}$ | 72.5 | 4 | 11.5σ | | N(1520) | $1510^{+3}_{-7}^{+11}_{-9}$ | $115^{+20}_{-15}^{+0}_{-40}$ | 19.8 | 6 | 5.0σ | | N(1535) | $1535^{+9}_{-8}^{+15}_{-22}$ | $120^{+20}_{-20}^{+0}_{-42}$ | 49.4 | 4 | 9.3σ | | N(1650) | $1650^{+5}_{-5}^{+11}_{-30}$ | $150^{+21}_{-22}^{+14}_{-50}$ | 82.1 | 4 | 12.2σ | | N(1720) | $1700^{+30}_{-28}^{+32}_{-35}$ | $450^{+109}_{-94}^{+149}_{-44}$ | 55.6 | 6 | 9.6σ | | N(2300) | $2300^{+40}_{-30}^{+109}_{-0}$ | $340^{+30}_{-30}^{+110}_{-58}$ | 120.7 | 4 | 15.0σ | | N(2570) | $2570^{+19}_{-10}^{+34}_{-10}$ | $250^{+14}_{-24}{}^{+69}_{-21}$ | 78.9 | 6 | 11.7σ | ## Preliminary results on N* baryons in $\psi' \rightarrow p\bar{p}\eta$ @ BESIII - No significant contribution from other resonance ~ p̄p mass enhancement. significance < 3.5σ - ♦ N(1535) was firstly studied by PWA in $J/\psi \rightarrow p\bar{p}\eta$ at BESII, and confirmed here. $$M = 1524^{+5+10}_{-5-4}$$ MeV, $$\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}$$ Consistent with PDG. sig.>5 σ ; J^P 1/2⁻ - * $B(\Psi' \to N(1535)\overline{p}) \times B(N(1535) \to p \eta) + c.c. = (5.2^{+0.3+3.2}_{-0.3-1.2}) \times 10^{-5}$ - * $B(\Psi' \to p\bar{p} \eta) = (6.4 \pm 0.2 \pm 0.6) \times 10^{-5}$ PDG2010: (6.0±1.2) × 10⁻⁵ - * $B(\Psi' \to p\bar{p} \eta)/B(J/\Psi \to p\bar{p} \eta) = (3.2 \pm 0.4)\%$ Suppressed compared with "12% rule" ## Summary #### ♦ BESIII is successfully operating since 2008: - * World largest data samples at J/ψ , ψ' , ψ (3770), ψ (4040) already collected, more data in future! - ◆ Recent results on light hadron spectroscopy - * Confirmation of pp threshold enhancement - * Confirms X(1835) and obser. two new structures in $J/\psi \rightarrow \gamma \pi \pi \eta^{\prime}$ - * Observation of a new structure X(1870) in $J/\psi \rightarrow \omega \eta \pi^+\pi^-$ - * First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$ (isospin breaking) - * $\eta\eta$ system in $J/\psi \rightarrow \gamma\eta\eta$ - * Confirms X(1810) in $J/\psi \rightarrow \gamma \omega \phi$ - * Observation of two new excited baryonic states N(2300) and N(2570)in $\psi' \rightarrow p\bar{p}\pi^0$. N(1535) is confirmed in $\psi' \rightarrow p\bar{p}\eta$. - ♦ Expect many more results from BESIII in future! # Backup Slides ## From BESII to BESIII #### BES II @ BEPC #### BES III @ BEPC II | | BESII | BESIII | |-----|----------------------------------------------|---------------------------------------| | MDC | $\sigma(p)/p = 1.78 \% \cdot \sqrt{1 + p^2}$ | $\sigma(p_t)/p_t = 0.32 \% \cdot p_t$ | | | $dE/dx_{reso} = 8 \%$ | $dE/dx_{reso} < 6\%$ | | TOF | 180 ps (for bhabha) | 90 ps (for bhabha) | | EMC | $\sigma(E)/E = 22\% \cdot \sqrt{E}$ | $\sigma(E)/E = 2.3\% \cdot \sqrt{E}$ | | MUC | 3 layers for barrel | 9 layers for barrel, 8 for endcap | BESI started data-taking in 1989 and was upgraded in 1998 to BESII. **BESI** collected 7.8 M J/ ψ events and 3.7 M ψ events. **BESII** collected 58 M J/ ψ events and 14 M ψ events. ## BESIII - physics using "charm" #### Charmonium physics: - Spectroscopy - transitions and decays #### Light hadron physics: - meson & baryon spectroscopy - glueball & hybrid - two-photon physics - e.m. form factors of nucleon #### Charm physics: - (semi)leptonic + hadronic decays - decay constant, form factors - CKM matrix: Vcd, Vcs - Do-Dobar mixing and CP violation - rare/forbidden decays #### Tau physics: - Tau decays near threshold - tau mass scan ...and many more. ## **BESIII** data sets and future plans ♦ 2008: July 19 first e^+e^- collider event at BESIII Nov.: ~ 14M ψ (2S) events for detector calibration • 2009 : 106M ψ (2S) events (4 times of CLEOc) 225M J/ ψ events (4 times of BESII) \sim 42 pb⁻¹ at continuum (3.65 GeV) ♦ 2010: 900 pb⁻¹ @ 3770 MeV ♦ 2011: 2000 pb⁻¹ @ 3770 MeV 470 pb⁻¹ @ 4010 MeV ♦ 2012: τ mass scan, R scan [2.0, 3.65] GeV 0.4 billion $\psi(2S)$ and 1 billion J/ψ events #### Tentative future running plans: * 2013: $E_{CM} = 4260$ and 4360 MeV for 'XYZ' studies (0.5 fb⁻¹ each); τ mass scan/R scan - 3.5 XCLEOc * 2014 and 2015: $E_{CM} = 4170 \text{ MeV for } D_s \ (\sim 2.4 \text{ fb}^{-1});$ additional $\psi(3770)$ data <u>27</u> ## Main contents in the study of the hadron spectroscopy - \triangleright Meson spectrum (q \overline{q}) - > New forms of hadrons (glueballs, hybrid states, multi-quark states) - Baryon spectrum (qqq) ## J/ψ decays provide ideal lab for hadron spectroscopy The lowest order diagrams for $J/\psi \rightarrow$ hadrons: - A good lab to hunt for new forms of hadrons - A good lab to study meson spectroscopy - A good lab for excited baryon states ## Observation of X(p p) in $J/\psi \rightarrow \gamma$ p ρ @ BESII ## X(1860) has large BR to $p\overline{p}$ BES measured: $$BR(J/\psi \rightarrow \gamma X(1860)) \bullet BR(X(1860) \rightarrow p\overline{p}) \sim 7 \times 10^{-5}$$ For a 0⁻⁺ meson: $$BR(J/\psi \to \gamma X(1860)) \sim 0.5 - 2 \times 10^{-3}$$ So we would have: $$BR(X(1860) \rightarrow p\overline{p}) \sim 4-14\%$$ (This BR to pp might be the largest among all PDG particles) Considering that decaying into $p\bar{p}$ is only from the tail of X(1860) and the phase space is very small, such a BR indicates X(1860) has large coupling to $p\bar{p}$! ## Not in $B^+ \rightarrow p\bar{p} K^+$ at *BaBar* and *Belle* # This narrow threshold enhancement is NOT observed in $J/\psi \to \omega p\bar{p}$ at BESII $Br(J/\psi \rightarrow \omega X)/Br(J/\psi \rightarrow \gamma X) < 0.5\% @ 95\% \text{ C.L.}$ # This narrow threshold enhancement is NOT observed in Y(1S) $\rightarrow \gamma p\overline{p}$ at CLEO $$Br(Y(1S) \rightarrow \gamma X) / Br(J/\psi \rightarrow \gamma X)$$ < 0.7% @ 90% CL #### PRD73, 032001(2006) This result cannot be explained by pure FSI effect, since FSI is a universal effect. Pure FSI interpretation of the narrow and strong pp threshold enhancement is disfavored. No enhancement near threshold ## Several non-observations ## Is the X(1835) from the same source of X(pp̄)? • The mass of $X(p\bar{p})$ is consistent with X(1835) • The width of $X(p\bar{p})$ is much narrower. #### Possible reasons: - X(p\(\bar{p}\)) and X(1835) come from different sources - Interference effect in J/ ψ -> $\gamma\pi\pi\eta'$ process should not be ignored in the determination of the X(1835) mass and width - There may be more than one resonance in the mass peak around 1.83GeV in J/ψ -> $\gamma\pi\pi\eta$ decays. ## X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$ $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^- (\eta^- \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma \text{ and } \eta^- \rightarrow \gamma \rho, \rho \rightarrow \pi^+ \pi^-)$ - Errors are statistical only. - The solid line is a fit to $1+\cos^2\theta_{\gamma}$, which is expected for a pseudoscalar. PRL 106, 072002 (2011) The background subtracted, acceptance-corrected $|\cos\theta_{\gamma}|$ districution for X(1835). # Study of $a_0(980) - f_0(980)$ mixing from $J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0 \psi' \to \gamma \chi_{c1} \to \gamma \pi^0 a_0^0(980) \to \gamma \pi^0 f_0(980) \to \gamma \pi^0 \pi^+ \pi^-$ PRD 83, 032003 (2011) - Mixing intensity provides important information in understanding the nature of $a_0(980)$ and $f_0(980)$. - * Narrow peak (8 MeV) at around 980 MeV can be expected in $\eta\pi$ (J/ $\psi \to \phi f_0 \to \phi a_0 \to \phi \eta\pi$ case) or $\pi^+\pi^-$ ($\chi_{c1} \to a_0\pi^0 \to f_0\pi^0 \to \pi^+\pi^-\pi^0$ case) invariant mass spectra. ## $a_0(980) \rightarrow f_0(980)$ mixing: $f_0 \rightarrow a_0$ transition from $J/\psi \rightarrow \phi$ $f_0 \rightarrow \phi$ $a_0 \rightarrow \phi$ $\eta \pi^0$ $$Br(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)$$ =(3.3±1.1(stat)±0.4(syst)±1.4(para))×10⁻⁶ (<5.4×10⁻⁶@90%C.L.) Mixing Intensity: $$\xi_{fa} = \frac{Br(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)}{Br(J/\psi \to \phi f_0(980) \to \phi \pi \pi)}$$ =(0.60±0.20(stat)±0.13(syst)±0.26(para))% (<1.1%@90%C.L.) - Mixing signal - --- $a_0(980)$ contribution from $J/\psi \rightarrow \gamma^*/K^*K \rightarrow \phi a_0(980)$ - --- Background polynomial ## $a_0(980) \rightarrow f_0(980)$ mixing: $a_0 \rightarrow f_0$ transition from $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$ - Mixing signal - --- f₀(980) contribution from other processes - --- Background polynomial Br($$\psi' \to \gamma \chi_{c1} \to \gamma \pi^0 a_0^0(980) \to \gamma \pi^0 f_0(980) \to \gamma \pi^0 \pi^+ \pi^-)$$ =(2.7±1.4(stat)±0.7(syst)±0.3(para))×10⁻⁷ (<6.0×10⁻⁷@90%C.L.) #### Mixing Intensity: $$\begin{split} \xi_{\rm af} = & \frac{Br(\psi' \to \gamma \chi_{c1} \to \gamma \pi^0 a_0^0 (980) \to \gamma \pi^0 f_0 (980) \to \gamma \pi^0 \pi^+ \pi^-}{Br(\psi' \to \lambda \phi_{c1} \to \gamma \pi^0 a_0^0 (980) \gamma \pi^0 \pi^0 \eta)} \\ = & (0.31 \pm 0.16 (stat) \pm 0.14 (syst) \pm 0.03 (para)) \% \\ & (<1.0 \% @ 90 \% C.L.) \end{split}$$ ## Mixing intensitity ξ_{af} vs. ξ_{fa} Shade region: BESIII measurements Red line: BESIII upper limit Dots: various predictions Very Useful in pinning down the resonance parameters of $a_0^0(980)$ and $f_0(980)$ ## Glueball signatures Enhanced production in gluon rich processes such as pp central production, J/ψ radiative decays and pp annihilation. J/ψ decays: a) $$(a)$$ (b) (b) (c) (c) (d) $($ ## Baryon Summary Table (J^P and status are listed) #### **Status:** - **** Existence is certain, and properties are at least fairly well explored. - *** Existence is very likely but further confirmation of quantum numbers and branching fractions is required. - ** Evidence of existence is only fair. - Evidence of existence is poor. | Resonance | Mass(MeV) | Width (MeV) | J^P | C.L. | |-----------|-----------|-------------|-----------|--------------| | N(1440) | 1440 | 350 | $1/2^{+}$ | **** | | N(1520) | 1520 | 125 | $3/2^-$ | **** | | N(1535) | 1535 | 150 | $1/2^{-}$ | **** | | N(1650) | 1650 | 150 | $1/2^{-}$ | **** | | N(1675) | 1675 | 145 | $5/2^{-}$ | **** | | N(1680) | 1680 | 130 | 5/2+ | **** | | N(1700) | 1700 | 100 | $3/2^{-}$ | *** | | N(1710) | 1710 | 100 | 1/2+ | *** | | N(1720) | 1720 | 150 | $3/2^{+}$ | **** | | N(1885) | 1885 | 160 | $3/2^{-}$ | 'Missing' N* | | N(1900) | 1900 | 498 | $3/2^{+}$ | ** | | N(2000) | 2000 | 300 | $5/2^{+}$ | ** | | N(2065) | 2065 | 150 | $3/2^{+}$ | 'Missing' N* | | N(2080) | 2080 | 270 | $3/2^-$ | ** | | N(2090) | 2090 | 300 | $1/2^{-}$ | * | | N(2100) | 2100 | 260 | $1/2^{+}$ | * | | N(2200) | 2200 | 300 | $5/2^-$ | ** | N* with spin 7/2 or larger is not shown here.