International Workshop on using Heavy Flavors to Probe New Hadron Spectroscopies/Dynamics

Recent Results of Light Hadron Spectra at BESIII (X(1835), X(1870), ...)

Yingchun Zhu (USTC, China) for the BESIII Collaboration

November 18-21, 2012 Haeundae Grand Hotel, Busan, South Korea

Outline

♦ Status of BEPCII / BESIII

- ♦ Recent Results on Light Hadron Spectroscopy
 - \bullet pp mass threshold structure in J/ ψ and ψ radiative decays
 - X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$
 - A new structure X(1870) in $J/\psi \rightarrow \omega \eta \pi^+ \pi^-$
 - η (1405) in J/ $\psi \to \gamma X$, $X \to f_0(980)\pi^0$, $f_0(980) \to \pi\pi$
 - PWA of $J/\psi \rightarrow \gamma \eta \eta$
 - PWA of $J/\psi \rightarrow \gamma \omega \phi$
 - N* states in $\psi' \rightarrow p\bar{p}\pi^0$ and $\psi' \rightarrow p\bar{p}\eta$

Summary

General layout of BEPCII/BESIII

2004: start BEPCII construction

2008: test run of BEPCII

2009-now: BEPCII/BESIII data taking

Double storage rings

Beam energy: 1.0 - 2.3 GeVDesigned lumi.: $1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

(*Peak Lumi*.: 0.65×10^{33} cm⁻²s⁻¹)

Optimum energy: 1.89 GeV

Energy spread: 5.16×10^{-4}

No. of bunches: 93

Bunch length: 1.5 cm

Total current: 0.91 A

Circumference: 237 m

The BESIII Detector

NIM A614:345-399,2010

> The detector is hermetic for neutral and charged particles with excellent resolution, PID, and large coverage.

J/ψ and ψ' data samples

So far BESIII has collected:

2009:

225 Million J/ ψ (4 times of BESII)

106 Million ψ ' (4 times of CLEOc)

2012: 1 Billion J/ψ
 0.4 Billion ψ'

The following results are based on the data samples of 225M J/ ψ and 106M ψ' events.

Hadron Spectroscopy

- > The ultimate goal of the study of hadron spectroscopy is to understand the dynamics of the constituent interactions.
- PQCD is not applicable in the light hadron sector.
 There exist phenomenological approaches and LQCD calculations.
- > Experimental data will provide necessary constrains on the parameters introduced by the theory.

New forms of hadrons

Conventionally we know:
 mesons (qq) and baryons (qqq)

- But many more forms which are QCD allowed, namely
 - * Multi-quark states: number of quarks ≥ 4
 - * Hybrid states: qq g, qqqg, ...
 - * Glueballs: gg, ggg, ···

Observed an enhancement at pp mass threshold @ BESII

- \succ M and Γ are not consistent with the properties of any known particle.
- > Consistent with spin zero expectation.
- Theoretical interpretations:

Conventional mesons / pp̄ bound state / multiquarks / glueball Final state interaction (FSI) ······

7

Confirmed @ BESIII and CLEOc

 $\psi' \rightarrow \pi^{+}\pi^{-}J/\psi$ (J/ $\psi \rightarrow \gamma$ p \bar{p})
(106M ψ' events)

M=1861
$$^{+6}_{-13}^{+7}_{-26}$$
 MeV/c² Γ < 38 MeV/c² (90% CL)

- > Same fit method as that of BESII.
- Consistent with BESII results.
 Chinese Physics C34(4) 421, (2010)
- ♦ Not observed in B-meson decay, $\psi' \rightarrow \gamma$ pp, $\Upsilon \rightarrow \gamma$ pp, J/ $\psi \rightarrow \omega$ pp at BESII, $\psi' \rightarrow \chi$ pp (X= γ , π^0 , η) at CLEOc.

 The enhancement is not pure FSI effect.

 $\psi' \rightarrow \pi^+\pi^-J/\psi \ (J/\psi \rightarrow \gamma \ p\bar{p})$ (24.5M ψ' events)

Fit region $\Delta m = 0.970 \text{ MeV}$ Consider X(2100):

$$M = 1837^{+10}_{-12}^{+9}_{-7} \text{ MeV/c}^2$$

 $\Gamma = 0^{+44}_{-0} \text{ MeV/c}^2$

Fit region $\Delta m = 0-300 \text{ MeV}$ Do not consider X(2100):

$$M = 1861^{+16}_{-6} \text{ (stat) MeV/c}^2$$

 $\Gamma = 0^{+32}_{-0} \text{ (stat) MeV/c}^2$

PRD 82, 092002 (2010)

PWA of $J/\psi \rightarrow \gamma p\bar{p}$ @ BESIII

First performed.

PRL 108, 112003 (2012)

Four components:

 $X(p\bar{p})$, $f_2(1910)$, $f_0(2100)$ and $0^{++}PS$

- The FSI effect considered.
- > Fit features:
- The fit with a BW and S-wave
 FSI (I=0) factor can well describe
 pp mass threshold structure.
- Much better than that w/o FSI effect, $\Delta lnL = 51$ (7.1 σ).
- Different FSI model → Model dependent uncertainty

Results:

50

$$J^{pc} = 0^{-+}$$

>6.8σ better than other J^{pc} assignments

$$M = 1832_{-5}^{+19} (stat)_{-17}^{+18} (syst) \pm 19 (mod) MeV/c^2$$

-100

50

$$\Gamma = 13 \pm 20 \text{ (stat)}_{-33}^{+11} \text{ (syst)} \pm 4 \text{ (mod)} \text{MeV/c}^2 \text{ or } \Gamma < 76 \text{MeV/c}^2 \text{ @ } 90\% \text{ C.L.}$$

100

$$B(J/\psi \to \gamma X(p\overline{p}))B(X(p\overline{p}) \to p\overline{p}) = (9.0^{+0.4}_{-1.1}(\text{stat})^{+1.5}_{-5.0}(\text{syst}) \pm 2.3(\text{mod})) \times 10^{-5}$$

Structure at pp mass threshold of $\psi' \rightarrow \gamma pp$ @ BESIII

- Observed a pp̄ mass threshold excess relative to PS.
 Line shape of pp̄ mass spectrum
- Line shape of pp̄ mass spectrum near threshold looks obviously differ. from that of J/ψ decays.
- No evident enhancement exist in pp̄ threshold in Dalitz plot.

PWA Results:

- > Significance of $X(p\bar{p})$ is > 6.9 σ .
- The production ratio R:

$$R = \frac{B(\psi' \to \gamma X(p\overline{p}))}{B(J/\psi \to \gamma X(p\overline{p}))}$$

= $(5.08^{+0.71}_{-0.45}(\text{stat})^{+0.67}_{-3.58}(\text{syst}) \pm 0.12(\text{mod}))\%$

It is suppressed compared with "12% rule".

PWA fit projection

PRL 108, 112003 (2012)

X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^-$

 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^- (\eta^- \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma \text{ and } \eta^- \rightarrow \gamma \rho, \rho \rightarrow \pi^+ \pi^-)$

♦ BESII Results: PRL 95, 262001 (2005)

- $*M = 1833.7\pm6.1(stat)\pm2.7(syst) MeV/c^2$
- * $\Gamma = 67.7 \pm 20.3 \text{(stat)} \pm 7.7 \text{(syst)} \text{ MeV/c}^2$
- * $B(J/\psi \to \gamma X(1835)) \cdot B(X(1835) \to \pi^+\pi^-\eta')$ = $(2.2\pm0.4(stat)\pm0.4(syst)) \times 10^{-4}$
- * Statistical Significance 7.70

♦ BESIII Results: PRL 106, 072002 (2011)

Resonance	M(MeV/c²)	Γ(MeV/c²)	Stat.Sig.
X(1835)	$1836.5 \pm 3.0^{+5.6}_{-2.1}$	$190.1 \pm 9.0^{+38}_{-36}$	>20σ
X(2120)	$2122.4 \pm 6.7^{+4.7}_{-2.7}$	$83 \pm 16^{+31}_{-11}$	7.2σ
X(2370)	2376.3±8.7 ^{+3.2} _{-4.3}	83±17 ⁺⁴⁴ -6	6.4σ

- * $B(J/\psi \to \gamma X(1835)) \cdot B(X(1835) \to \pi^+ \pi^- \eta') =$ $(2.87 \pm 0.09(stat)^{+0.49}_{-0.52}(syst)) \times 10^{-4}$
- * For X(1835), the angular distribution of the radiative photon is consistent with 0^{-+} assignment. (> 20σ)

PWA is needed to understand their properties!

What's the nature of X(1835), X(2120) and X(2370)?

- > X(1835) observed in $J/\psi \rightarrow \gamma \pi^+\pi^-\eta^-$
 - The measured width at BESIII is larger than that from BESII.
 - * Observed $p\bar{p}$ sub-threshold enhancement X(1860) in $J/\psi \to \gamma p\bar{p}$ at BESII and confirmed at BESIII and CLEOc.
 - * Are the X(1835) and X($p\bar{p}$) the same resonant state?
 - * $p\bar{p}$ bound state? glueball? η' excited state?

Still remain unclear at present!

- > X(2120) / X(2370) observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$
 - The first time resonant structures are observed at ~2.1 and 2.4GeV.
 Interesting since:
 - * LQCD predicts the lowest 0⁻⁺ glueballs at~2.4GeV.
 - * A good channel for finding 0⁻⁺ glueballs.
 - Their nature: pseudoscalar glueball? η/η' excited states?
- \triangleright A PWA is needed to measure their J^{PC} , M and Γ more precisely, and planned with much higher statistics J/ψ data sample.

X(1870) in J/ $\psi \to \omega X$, X $\to a_0^{\pm}$ (980) π^{\mp} , a_0^{\pm} (980) $\to \eta \pi^{\pm}$

A study of $J/\psi \rightarrow \omega \eta \pi^{+}\pi^{-}$ at BESIII

PRL 107, 182001 (2011)

M, Γ , and B(J/ $\psi \rightarrow \omega X$) \cdot B($X \rightarrow a_0 \pi$) \cdot B($a_0 \rightarrow \eta \pi$)

				<u>-</u>
Resonance	${\rm Mass}~({\rm MeV}/c^2)$	Width $({\rm MeV}/c^2)$	\mathcal{B} (10 ⁻⁴)	Stat.Sig.
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$	> 10 σ
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$	> 10 σ
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26^{+0.72}_{-0.36}$	7.2 σ

Is X(1870) due to X(1835), η_2 (1870), an interference of both, or a new resonance ? J^{PC} ?

Need PWA!

η(1405) in $J/\psi \rightarrow \gamma X$, $X \rightarrow f_0(980)\pi^0$, $f_0(980) \rightarrow 2\pi$

First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$

PRL 108, 182001 (2012)

- Evidence for an enhancement at ~ 1.3GeV (potentially from $f_1(1285)/\eta(1295)$)
- ♦ Analysis of angular distribution indicates the peak at 1.4GeV is from $\eta(1405)$ (J^P =0 -), not from $f_1(1420)$ (J^P=1+). Stat. sig. > 10 σ .
- Large Isospin-violating decay rate:

$$\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0(980)\pi^0 \to \pi^0\pi^0\eta)} \approx (17.9 \pm 4.2)\%$$

♦ In general, magnitude of isospin violation in strong decay should be <1%.</p>

PRD 83,032003 (2011)

$$\xi_{af} = \frac{Br(\chi_{c1} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\chi_{c1} \to a_0(980)\pi^0 \to \eta\pi^0\pi^0)} < 1\%(90\% C.L.)$$

 a_0 - f_0 mixing alone can not explain the branching ratio of $\eta(1405) \rightarrow f_0(980) \pi_0^0$

• Anomalous line shape of $f_0(980)$ in $J/\psi \rightarrow \gamma 3\pi$

Surprising The measured width of f_0 (980) is much narrower than the world average (PDG 2012: 40-100 MeV/ c^2)

♦ Triangle Singularity (TS) mechanism

* K*K in TS mechanism is on-shell.

- * TS is much more dominant than $a_0 f_0$ mixing term.
 - Explains the large isospin violations in $\eta(1405) \rightarrow \pi^+\pi^-\pi^0$.
 - Predicts a narrow peak at $M(\pi^+\pi^-)\sim 980$ MeV.

Study of $\eta\eta$ system

- ◆ LQCD predicts the lowest glueball state is 0⁺⁺ with M~1.5 -1.7GeV, the next lightest glueball is 2⁺⁺ with M~2.3 GeV.
- ♦ The mixing of glueball with nearby qq meson makes the situation more difficult.

Glueball spectrum from unquenched LQCD calculations. $r_0^{-1} = 410 \text{ MeV}$

• Early study of $J/\psi \rightarrow \gamma \eta \eta$ was made by Crystal Ball in 1982. Found J^{PC} of the resonance ~ 1.7GeV is 2^{++} .

Other experiments:

- Crystal ball Collaboration (2002) analyzed the final states of $\pi^0\pi^0\pi^0$, $\eta\pi^0\pi^0$ and $\pi^0\eta\eta$, found a 2⁺⁺ (~1870MeV), but no f₀(1710).
- E835(2006): ppbar $\to \pi^0 \eta \eta$, found $f_0(1500)$ and $f_0(1710)$.
- WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$.

Preliminary PWA results of J/ψ-γηη @ BESIII

For $J/\psi \rightarrow \gamma PP$ (Pseudoscalars), only intermediate states with J^{PC} =even⁺⁺ are possible.

♦ 0⁺⁺: $f_0(1500)(8.2 \,\sigma)$, $f_0(1710)(25 \,\sigma)$, $f_0(2100)(13.9 \,\sigma)$, 0⁺⁺ PS

• 2^{++} : $f_2/(1525)(11\sigma)$, $f_2(1810)/f_2(1950)(6.4\sigma)$

 \bullet 4⁺⁺: $f_4(2340)(7.6 \sigma)$

Resonance	$\mathrm{Mass}(\mathrm{MeV}/c^2)$	$Width(MeV/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.61^{+0.29+0.49}_{-0.32-1.37}) \times 10^{-5}$	8.2σ
$f_0(1710)$	1759^{+6+15}_{-6-25}	172^{+10+32}_{-10-16}	$(2.35^{+0.07+1.24}_{-0.07-0.74})\times10^{-4}$	$25.0 \ \sigma$
$f_0(2100)$	2081_{-13-36}^{+13+24}	273^{+27+70}_{-24-23}	$(9.99^{+0.57+5.64}_{-0.52-2.46})\times10^{-5}$	13.9σ
$f_2^{\prime}(1525)$	1513^{+5+4}_{-5-10}	75^{+12+14}_{-10-8}	$(3.41^{+0.43+1.37}_{-0.50-1.29}) \times 10^{-5}$	$11.0 \ \sigma$
$f_2(1810)/f_2(1950)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.38^{+0.60+3.41}_{-0.67-2.34}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.58^{+0.61}_{-0.65}^{+2.36}) \times 10^{-5}$	7.6σ

$M_{\omega,\phi}$ threshold enhancement in $J/\psi \rightarrow \gamma \omega, \phi$ @ BESII

PWA Results @ BESII:

- $Φ M = 1812^{+19}_{-26} \pm 18 \text{ MeV/c}^2;$ $\Gamma = 105\pm20\pm28 \text{ MeV/c}^2$ $B(J/\psi \rightarrow \gamma X) \cdot B(X \rightarrow \omega \phi) = (2.61\pm0.27\pm0.65) \times 10^{-4}$
- ♦ The enhancement favors $J^{PC} = 0^{++}$ over 0^{-+} and 2^{++} , stat. sig.>10 σ .
- Not compatible with any known conventional state. Is it the same 0^{++} observed in $\gamma K\bar{K}$ or $\phi \pi\pi$ ($f_0(1710)$ or $f_0(1790)$), or is it a glueball, or a hybrid

Preliminary PWA results of $J/\psi \rightarrow \gamma \omega \phi$ @ BESIII

- ♦ For X(1810): M, Γ and Br are consistent with that of BESII results. Confirms that the J^{PC} is O^{++} with stat. sig. of > O^{++} Not compatible to X(1835) and X(pp̄) due to diff. M and J^{PC}.
- Is X(1810) the $f_0(1710)/f_0(1790)$ or a new state?

Further looking in diff. decay modes ($\omega\omega$, K*K*...) and diff. production processes ($J/\psi \rightarrow \phi \omega \phi$, $\omega \omega \phi$...) is desirable!

Observation of two new N* in $\psi' \rightarrow p\bar{p} \pi^0$ @ BESIII

- ♦ Non-relativistic quark model is successful in interpreting the excited baryons.
- ◆ Predicted more excited states ("missing resonance problem").

 $M_{n\pi^0}(GeV/c^2)$

vents/(32 MeV/c2

- \triangleright Events with $p\bar{p}$ arising from J/ψ are excluded.
- The threshold enhancement in pp mass spectrum is visible.
- N* with spin 7/2 or larger is not considered.

arXiv:1207.0233

PWA Results:

- Soft-pion theory indicates that the off-shell decay is needed. N(940) with M=940MeV and $\Gamma=0$ MeV is included in PWA.
- ♦ A 1⁻⁻ pp̄ resonance candidate described by BW function is tested. The largest sig. is 4σ at M=2000MeV and $\Gamma=50$ MeV. The threshold enhancement most likely due to interference of N* resonances.
- \bullet No clear evidence for N(1885)/N(2065).
- Two new N* resonances N(2300) and N(2570) are observed with 1/2+ and 5/2⁻.

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	Sig.
N(1440)	$1390^{+11}_{-21}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
N(1520)	$1510^{+3}_{-7}^{+11}_{-9}$	$115^{+20}_{-15}^{+0}_{-40}$	19.8	6	5.0σ
N(1535)	$1535^{+9}_{-8}^{+15}_{-22}$	$120^{+20}_{-20}^{+0}_{-42}$	49.4	4	9.3σ
N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}^{+14}_{-50}$	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}^{+32}_{-35}$	$450^{+109}_{-94}^{+149}_{-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40}_{-30}^{+109}_{-0}$	$340^{+30}_{-30}^{+110}_{-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19}_{-10}^{+34}_{-10}$	$250^{+14}_{-24}{}^{+69}_{-21}$	78.9	6	11.7σ

Preliminary results on N* baryons in $\psi' \rightarrow p\bar{p}\eta$ @ BESIII

- No significant contribution from other resonance ~ p̄p mass enhancement.
 significance < 3.5σ
- ♦ N(1535) was firstly studied by PWA in $J/\psi \rightarrow p\bar{p}\eta$ at BESII, and confirmed here.

$$M = 1524^{+5+10}_{-5-4}$$
 MeV,

$$\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}$$

Consistent with PDG. sig.>5 σ ; J^P 1/2⁻

- * $B(\Psi' \to N(1535)\overline{p}) \times B(N(1535) \to p \eta) + c.c. = (5.2^{+0.3+3.2}_{-0.3-1.2}) \times 10^{-5}$
- * $B(\Psi' \to p\bar{p} \eta) = (6.4 \pm 0.2 \pm 0.6) \times 10^{-5}$ PDG2010: (6.0±1.2) × 10⁻⁵
- * $B(\Psi' \to p\bar{p} \eta)/B(J/\Psi \to p\bar{p} \eta) = (3.2 \pm 0.4)\%$ Suppressed compared with "12% rule"

Summary

♦ BESIII is successfully operating since 2008:

- * World largest data samples at J/ψ , ψ' , ψ (3770), ψ (4040) already collected, more data in future!
- ◆ Recent results on light hadron spectroscopy
 - * Confirmation of pp threshold enhancement
 - * Confirms X(1835) and obser. two new structures in $J/\psi \rightarrow \gamma \pi \pi \eta^{\prime}$
 - * Observation of a new structure X(1870) in $J/\psi \rightarrow \omega \eta \pi^+\pi^-$
 - * First observation of $\eta(1405) \rightarrow f_0(980)\pi^0$ (isospin breaking)
 - * $\eta\eta$ system in $J/\psi \rightarrow \gamma\eta\eta$
 - * Confirms X(1810) in $J/\psi \rightarrow \gamma \omega \phi$
 - * Observation of two new excited baryonic states N(2300) and N(2570)in $\psi' \rightarrow p\bar{p}\pi^0$. N(1535) is confirmed in $\psi' \rightarrow p\bar{p}\eta$.
- ♦ Expect many more results from BESIII in future!

Backup Slides

From BESII to BESIII

BES II @ BEPC

BES III @ BEPC II

	BESII	BESIII
MDC	$\sigma(p)/p = 1.78 \% \cdot \sqrt{1 + p^2}$	$\sigma(p_t)/p_t = 0.32 \% \cdot p_t$
	$dE/dx_{reso} = 8 \%$	$dE/dx_{reso} < 6\%$
TOF	180 ps (for bhabha)	90 ps (for bhabha)
EMC	$\sigma(E)/E = 22\% \cdot \sqrt{E}$	$\sigma(E)/E = 2.3\% \cdot \sqrt{E}$
MUC	3 layers for barrel	9 layers for barrel, 8 for endcap

BESI started data-taking in 1989 and was upgraded in 1998 to BESII.

BESI collected 7.8 M J/ ψ events and 3.7 M ψ events.

BESII collected 58 M J/ ψ events and 14 M ψ events.

BESIII - physics using "charm"

Charmonium physics:

- Spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy
- glueball & hybrid
- two-photon physics
- e.m. form factors of nucleon

Charm physics:

- (semi)leptonic + hadronic decays
- decay constant, form factors
- CKM matrix: Vcd, Vcs
- Do-Dobar mixing and CP violation
- rare/forbidden decays

Tau physics:

- Tau decays near threshold
- tau mass scan

...and many more.

BESIII data sets and future plans

♦ 2008: July 19 first e^+e^- collider event at BESIII Nov.: ~ 14M ψ (2S) events for detector calibration

• 2009 : 106M ψ (2S) events (4 times of CLEOc) 225M J/ ψ events (4 times of BESII) \sim 42 pb⁻¹ at continuum (3.65 GeV)

♦ 2010: 900 pb⁻¹ @ 3770 MeV

♦ 2011: 2000 pb⁻¹ @ 3770 MeV

470 pb⁻¹ @ 4010 MeV

♦ 2012: τ mass scan, R scan [2.0, 3.65] GeV

0.4 billion $\psi(2S)$ and 1 billion J/ψ events

Tentative future running plans:

* 2013: $E_{CM} = 4260$ and 4360 MeV for 'XYZ' studies (0.5 fb⁻¹ each); τ mass scan/R scan

- 3.5 XCLEOc

* 2014 and 2015: $E_{CM} = 4170 \text{ MeV for } D_s \ (\sim 2.4 \text{ fb}^{-1});$ additional $\psi(3770)$ data

<u>27</u>

Main contents in the study of the hadron spectroscopy

- \triangleright Meson spectrum (q \overline{q})
- > New forms of hadrons (glueballs, hybrid states, multi-quark states)
- Baryon spectrum (qqq)

J/ψ decays provide ideal lab for hadron spectroscopy

The lowest order diagrams for $J/\psi \rightarrow$ hadrons:

- A good lab to hunt for new forms of hadrons
- A good lab to study meson spectroscopy
- A good lab for excited baryon states

Observation of X(p p) in $J/\psi \rightarrow \gamma$ p ρ @ BESII

X(1860) has large BR to $p\overline{p}$

BES measured:

$$BR(J/\psi \rightarrow \gamma X(1860)) \bullet BR(X(1860) \rightarrow p\overline{p}) \sim 7 \times 10^{-5}$$

For a 0⁻⁺ meson:

$$BR(J/\psi \to \gamma X(1860)) \sim 0.5 - 2 \times 10^{-3}$$

So we would have:

$$BR(X(1860) \rightarrow p\overline{p}) \sim 4-14\%$$

(This BR to pp might be the largest among all PDG particles)

Considering that decaying into $p\bar{p}$ is only from the tail of X(1860) and the phase space is very small, such a BR indicates X(1860) has large coupling to $p\bar{p}$!

Not in $B^+ \rightarrow p\bar{p} K^+$ at *BaBar* and *Belle*

This narrow threshold enhancement is NOT observed in $J/\psi \to \omega p\bar{p}$ at BESII

 $Br(J/\psi \rightarrow \omega X)/Br(J/\psi \rightarrow \gamma X) < 0.5\% @ 95\% \text{ C.L.}$

This narrow threshold enhancement is NOT observed in Y(1S) $\rightarrow \gamma p\overline{p}$ at CLEO

$$Br(Y(1S) \rightarrow \gamma X) / Br(J/\psi \rightarrow \gamma X)$$

< 0.7% @ 90% CL

PRD73, 032001(2006)

This result cannot be explained by pure FSI effect, since FSI is a universal effect.

Pure FSI interpretation of the narrow and strong pp threshold enhancement is disfavored.

No enhancement near threshold

Several non-observations

Is the X(1835) from the same source of X(pp̄)?

• The mass of $X(p\bar{p})$ is consistent with X(1835)

• The width of $X(p\bar{p})$ is much narrower.

Possible reasons:

- X(p\(\bar{p}\)) and X(1835) come from different sources
- Interference effect in J/ ψ -> $\gamma\pi\pi\eta'$ process should not be ignored in the determination of the X(1835) mass and width
- There may be more than one resonance in the mass peak around 1.83GeV in J/ψ -> $\gamma\pi\pi\eta$ decays.

X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$

 $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^- (\eta^- \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma \text{ and } \eta^- \rightarrow \gamma \rho, \rho \rightarrow \pi^+ \pi^-)$

- Errors are statistical only.
- The solid line is a fit to $1+\cos^2\theta_{\gamma}$, which is expected for a pseudoscalar.

PRL 106, 072002 (2011)

The background subtracted, acceptance-corrected $|\cos\theta_{\gamma}|$ districution for X(1835).

Study of $a_0(980) - f_0(980)$ mixing from $J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0 \psi' \to \gamma \chi_{c1} \to \gamma \pi^0 a_0^0(980) \to \gamma \pi^0 f_0(980) \to \gamma \pi^0 \pi^+ \pi^-$

PRD 83, 032003 (2011)

- Mixing intensity provides important information in understanding the nature of $a_0(980)$ and $f_0(980)$.
- * Narrow peak (8 MeV) at around 980 MeV can be expected in $\eta\pi$ (J/ $\psi \to \phi f_0 \to \phi a_0 \to \phi \eta\pi$ case) or $\pi^+\pi^-$ ($\chi_{c1} \to a_0\pi^0 \to f_0\pi^0 \to \pi^+\pi^-\pi^0$ case) invariant mass spectra.

$a_0(980) \rightarrow f_0(980)$ mixing: $f_0 \rightarrow a_0$ transition from $J/\psi \rightarrow \phi$ $f_0 \rightarrow \phi$ $a_0 \rightarrow \phi$ $\eta \pi^0$

$$Br(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)$$
=(3.3±1.1(stat)±0.4(syst)±1.4(para))×10⁻⁶
(<5.4×10⁻⁶@90%C.L.)

Mixing Intensity:
$$\xi_{fa} = \frac{Br(J/\psi \to \phi f_0(980) \to \phi a_0^0(980) \to \phi \eta \pi^0)}{Br(J/\psi \to \phi f_0(980) \to \phi \pi \pi)}$$
=(0.60±0.20(stat)±0.13(syst)±0.26(para))%
(<1.1%@90%C.L.)

- Mixing signal
- --- $a_0(980)$ contribution from $J/\psi \rightarrow \gamma^*/K^*K \rightarrow \phi a_0(980)$
- --- Background polynomial

$a_0(980) \rightarrow f_0(980)$ mixing: $a_0 \rightarrow f_0$ transition from $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow a_0 \pi^0 \rightarrow f_0 \pi^0 \rightarrow \pi^+ \pi^- \pi^0$

- Mixing signal
- --- f₀(980) contribution from other processes
- --- Background polynomial

Br(
$$\psi' \to \gamma \chi_{c1} \to \gamma \pi^0 a_0^0(980) \to \gamma \pi^0 f_0(980) \to \gamma \pi^0 \pi^+ \pi^-)$$

=(2.7±1.4(stat)±0.7(syst)±0.3(para))×10⁻⁷
(<6.0×10⁻⁷@90%C.L.)

Mixing Intensity:

$$\begin{split} \xi_{\rm af} = & \frac{Br(\psi' \to \gamma \chi_{c1} \to \gamma \pi^0 a_0^0 (980) \to \gamma \pi^0 f_0 (980) \to \gamma \pi^0 \pi^+ \pi^-}{Br(\psi' \to \lambda \phi_{c1} \to \gamma \pi^0 a_0^0 (980) \gamma \pi^0 \pi^0 \eta)} \\ = & (0.31 \pm 0.16 (stat) \pm 0.14 (syst) \pm 0.03 (para)) \% \\ & (<1.0 \% @ 90 \% C.L.) \end{split}$$

Mixing intensitity ξ_{af} vs. ξ_{fa}

Shade region: BESIII measurements

Red line: BESIII upper limit

Dots: various predictions

Very Useful in pinning down the resonance parameters of $a_0^0(980)$ and $f_0(980)$

Glueball signatures

 Enhanced production in gluon rich processes such as pp central production, J/ψ radiative decays and pp annihilation.

 J/ψ decays:

a)
$$(a)$$
 (b) (b) (c) (c) (d) $($

Baryon Summary Table (J^P and status are listed)

Status:

- **** Existence is certain, and properties are at least fairly well explored.
- *** Existence is very likely but further confirmation of quantum numbers and branching fractions is required.
- ** Evidence of existence is only fair.
- Evidence of existence is poor.

Resonance	Mass(MeV)	Width (MeV)	J^P	C.L.
N(1440)	1440	350	$1/2^{+}$	****
N(1520)	1520	125	$3/2^-$	****
N(1535)	1535	150	$1/2^{-}$	****
N(1650)	1650	150	$1/2^{-}$	****
N(1675)	1675	145	$5/2^{-}$	****
N(1680)	1680	130	5/2+	****
N(1700)	1700	100	$3/2^{-}$	***
N(1710)	1710	100	1/2+	***
N(1720)	1720	150	$3/2^{+}$	****
N(1885)	1885	160	$3/2^{-}$	'Missing' N*
N(1900)	1900	498	$3/2^{+}$	**
N(2000)	2000	300	$5/2^{+}$	**
N(2065)	2065	150	$3/2^{+}$	'Missing' N*
N(2080)	2080	270	$3/2^-$	**
N(2090)	2090	300	$1/2^{-}$	*
N(2100)	2100	260	$1/2^{+}$	*
N(2200)	2200	300	$5/2^-$	**

N* with spin 7/2 or larger is not shown here.