Recent Charmonium Results from BESIII

Yaqian WANG¹

(for BESIII Collaboration)

¹Mainz University

X_{th} Quark Confinement and the Hadron Spectrum 8-12 October 2012

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Outline

Outline

Introduction of BEPCII and BESIII

Charmonium related results

 h_c η_c η'_c

Summary

BEPCII and **BESIII**

	BEPCII			
<i>E</i> _{beam} :	1-2.3 GeV			
L _{design} :	$1 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$			
E _{opt} :	1.89 GeV			
E _{spread} :	$5.16 imes 10^{-4}$			
N _{bunch} :	93			
L _{bunch} :	1.5 cm			
l _{total} :	0.91 A			
BESIII				
He-based drift chamber:				
0.5%@1 GeV/ <i>c</i> , dE/dx~6%				
plastic scintillator TOF:				
80 ps (B), 110 ps (E)				
CsI EM calorimeter:				
2.5% (B), 5% (E) @1 GeV				
1T Superconducting magnet				
Muon system: 39 layers of RPC				

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ● ● ● ● ●

Data samples

First e+e- collision event on 19th July, 2008

- ▶ 2009: 106 million ψ'
 225 million J/ψ
- ► 2010: ~900 pb⁻¹ ψ(3770)
- ▶ 2011: ~2000 pb⁻¹ ψ(3770)
 470 pb⁻¹ @ 4.01 GeV
- ▶ 2012: ~0.4 billion ψ'
 ~1.0 billion J/ψ

Peak luminosity reached 0.65 \times 10³³ @ ψ (3770)

Outline

Introduction of BEPCII and BESIII

Charmonium related results

h_c

 $\begin{array}{l} \eta_{\mathbf{C}} \\ \eta_{\mathbf{C}}' \end{array}$

Summary

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

h_c

- P-wave spin singlet (S=0, L=1)
- First evidence: E835 in $p\bar{p} \rightarrow h_c \rightarrow \gamma \eta_c$
- Potential model:

Non-vanishing P-wave spin-spin interaction

$$DM_{hf}(1P) = M_{h_c}) - < M(1^3 P_J) > \neq 0,$$
where $< M(1^3 P_J) > = \frac{1}{9}(M_{\chi_{c0}} + 3M_{\chi_{c1}} + 5M_{\chi_{c2}})$

► CLEO-c observed h_c in $e^+e^- \rightarrow \psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ $\Delta M_{hf}(1P)=0.08 \pm 0.18 \pm 0.12 \text{ MeV}/c^2$

consistent with 1P hyperfine splitting = 0

- Theoretical predictions:
 - $\mathcal{B}(\psi' \to \pi^0 h_c) = (0.4 1.3) \times 10^{-3}, \ \mathcal{B}(h_c \to \gamma \eta_c) = 48\% \text{ (NPQCD)}$ $\mathcal{B}(h_c \to \gamma \eta_c) = 88\% \text{ (PQCD) Y. P. Kuang, [PRD 65, 094024 (2002)]}$
 - $\mathcal{B}(h_c \rightarrow \gamma \eta_c) = 38\%$ Godfrey and Rosner, [PRD 66, 014012 (2002)]

< ロ > < 同 > < 三 > < 三 > < 三 > <

▲□▶▲□▶▲≣▶▲≣▶ = のへで

▲□▶▲□▶▲≣▶▲≣▶ = のへで

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

h_c exclusive [arXiv:1209.4963]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 の へ ()

h_c exclusive [arXiv:1209.4963]

h_c exclusive [arXiv:1209.4963]

Simultaneous fit to $M_{\pi^0}^{\text{recoil}}$, $\chi^2/\text{ndf} = 32/46$

Yaqian WANG (Mainz University)

No. of signals

 832 ± 35

-

590

 136 ± 14

Outline

Introduction of BEPCII and BESIII

Charmonium related results

 $egin{array}{l} eta_{c} \ \eta_{c} \ \eta_{c}^{\prime} \end{array}$

Summary

<ロト < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$\eta_{\mathbf{C}}$

- Ground state of cc̄ system
- Discrepancies between different experiments
 - Charmonium radiative decay
 - Two-photon fusion or B decay
- Provide information on the hyperfine splitting: $M_{J/\psi} M_{\eta_c}$
- Important experimental input to tests of lattice QCD

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶

wangy@kph.uni-mainz.de 10/20

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

η_c line shape

b Distortion of η_c from CLEO-c [PRL 102, 011801 (2009)]

• Line shape of η_c from BABAR [PRD 84, 012004 (2011)]

 \blacktriangleright η_c from BESIII [arXiv:1209.4963]

臣

590

<ロト < 団 > < 巨 > < 巨 >

Its η_c

η_c line shape

- Distortion of η_c from CLEO-c
 [PRL 102, 011801 (2009)]
- Line shape of η_c from BABAR
 [PRD 84, 012004 (2011)]
- η_c from BESIII [arXiv:1209.4963]

E

590

< □ > < □ > < □ > < □ > < □ >

ults η_{c}

η_c line shape

- Distortion of η_c from CLEO-c
 [PRL 102, 011801 (2009)]
- Line shape of η_c from BABAR
 [PRD 84, 012004 (2011)]
- η_c from BESIII [arXiv:1209.4963]

・ロト・日本・ キャー キャー キー シック

$\psi' ightarrow \gamma \eta_{m{c}}$ [PRL 108, 222002 (2012)]

- Modified Breit-Wigner (hindered M1)
- Possible interference between η_c and non- η_c decays
- Simultaneous fit

Yaqian WANG (Mainz University)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

<ロト < 団 > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of η_c

- $M_{\eta_c} = 2984.3 \pm 0.6 \pm 0.6 \text{ MeV}/c^2$
- $\Gamma_{\eta_c} = 32.0 \pm 1.2 \pm 1.0 \text{ MeV}$
- Two solutions of the interference
 - $\phi_1 = 2.40 \pm 0.07 \pm 0.08$ rad
 - $\phi_2 = 4.19 \pm 0.03 \pm 0.09$ rad

Outline

Introduction of BEPCII and BESIII

Charmonium related results

 h_c η_c η'_c

Summary

▲ロ▶▲□▶▲三▶▲三▶ 三 のへで

M1 transition

Search for $\psi' \to \gamma \eta'_c$

- Access to spin-singlet states
- ▶ Rather weaker than E1 \iff largest ψ' sample
- Disagreement between theory and experiment

•
$$\psi' \rightarrow \gamma \eta_c$$
: $\mathcal{B}^{theo} = (1.6/3.4)\% \gg \mathcal{B}^{exp} = 0.34\%$

•
$$\psi' \rightarrow \gamma \eta_c'$$
: $\mathcal{B}^{theo} = (5.9/7.3) \times 10^{-4}$

• Other potential models: $\mathcal{B}(\psi' \rightarrow \gamma \eta'_c) = (0.1 \sim 6.2) \times 10^{-4}$ [arXiv:0909.2812]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

$\eta_{\rm C}'$

- First reported by Crystal Ball in 1982
- Other published results:
 - $B \rightarrow K \eta'_c$
 - $\gamma\gamma \to \eta'_{\rm c} \to {\rm K}{\rm K}\pi$
 - double cc̄ production
- \sim 50 MeV photon in $\psi' \rightarrow \gamma \eta'_{c}$

- PRL 89 102001 (2002);
 PRL 92 142001 (2004);
 PRD 72 031101 (2005)
- PRL 92 142002 (2004);
 PRD 84 012004 (2011)
- PRD 72 031101 (2005)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$\eta_{m{c}}^{\prime}
ightarrow m{K} m{ar{K}} \pi$$
 [PRL 109, 042003 (2012)]

- Simultaneous fit:
 - η'_c signal: BW (M1) (Mass resolution extrapolated from χ_{cJ})
 - χ_{cJ} signal: MC shape smeared with Gaussian
 - ▶ BG from $e^+e^- \rightarrow K\bar{K}\pi(ISR)$, $\psi' \rightarrow K\bar{K}\pi(FSR)$, $\psi' \rightarrow K\bar{K}\pi$
 - Statistical significance $> 10\sigma$ [PRL 109, 042003 (2012)]

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □

Results of $\psi' \to \gamma \eta'_{c} \to \gamma K K \pi$

- Mass and width:
 - $M(\eta_c') = 3637.6 \pm 2.9 \pm 1.6 \text{ MeV}/c^2$
 - $\Gamma(\eta_c') = 16.9 \pm 6.4 \pm 4.8 \text{ MeV}$
- Branching fractions:
 - $\mathcal{B}(\psi' \rightarrow \gamma \eta'_{c} \rightarrow \gamma K \bar{K} \pi) = (1.30 \pm 0.20 \pm 0.30) \times 10^{-5}$
 - Using $\mathcal{B}(\eta'_c \to K\bar{K}\pi) = (1.9 \pm 0.4 \pm 1.1)\%$ (BABAR) $\mathcal{B}(\psi' \to \gamma \eta'_c) = (6.8 \pm 1.1 \pm 4.5) \times 10^{-4}$
 - ► CLEO-c: < 7.6 × 10⁻⁴ [PRD 81, 052002 (2010)]
 - ▶ Potential models: (0.1~6.2)×10⁻⁴ [arXiv:0909.2812]

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

$$\eta_{m{c}}^{\prime}
ightarrow {m{VV}}(
ho^{m{0}}
ho^{m{0}},{m{K}^{*0}}ar{m{K}^{*0}},\phi\phi)$$
 [PRD 84, 091102 (2011)]

"Intermediate charmed meson loops" to evade helicity selection rule

V	$\mathcal{B}^{\mu\nu}(\psi^{\mu} \to \gamma \eta^{\mu}_{c} \to \gamma \nu \nu)$	$\mathcal{B}^{\circ,\rho}(\eta_{c}^{\circ} \rightarrow VV)$	$\mathcal{B}^{\mathrm{mod}\mathrm{g}}(\eta_{\mathrm{C}}^{\mathrm{c}} \rightarrow \mathrm{V}\mathrm{V})$
	(10^{-7})	(10^{-3})	(10^{-3})
$ ho^{0}$	12.7	3.1	6.4 to 28.9
K^{*0}	19.6	5.4	7.9 to 35.8
ϕ	7.8	2.0	2.1 to 9.8

臣

$$\eta_{m{c}}^{\prime}
ightarrow {m{VV}}(
ho^{m{0}}
ho^{m{0}},{m{K}^{*0}}ar{m{K}^{*0}},\phi\phi)$$
 [PRD 84, 091102 (2011)]

"Intermediate charmed meson loops" to evade helicity selection rule

Upper limits smaller than the theoretical predictions.

< ロ > < 同 > < 三 > < 三 >

590

Summary

- With 106 M ψ' data sample and good performance of BEPCII and BESIII, several interesting results came out:
 - The branching fractions of $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ are determined, besides the mass and width of h_c
 - Parameters of η_c are measured with high precision, interference between η_c and the non-resonant amplitudes around the η_c mass is considered for the first time.
 - Observation of M1 transition $\psi' \rightarrow \gamma \eta'_c$ with $K\bar{K}\pi$ final states
- With the new large data samples, many interesting results are expected.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シタの

Summary

- With 106 M ψ' data sample and good performance of BEPCII and BESIII, several interesting results came out:
 - The branching fractions of $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ are determined, besides the mass and width of h_c
 - Parameters of η_c are measured with high precision, interference between η_c and the non-resonant amplitudes around the η_c mass is considered for the first time.
 - Observation of M1 transition $\psi' \to \gamma \eta'_c$ with $K\bar{K}\pi$ final states
- With the new large data samples, many interesting results are expected.

Thank you!

 $\mathcal{O}\mathcal{Q}\mathcal{O}$