The BESIII Experiment

Chengping Shen for BESIII 沈成平

BEACH 2014

21-26 July, 2014 at Birmingham

The Experiment: BESIII at BEPCII

BESII

Multipurpose

Detector

(Scale)

e+e⁻
Collisions with E_{cm} from $\approx 2 \text{ GeV to } 4.6 \text{ GeV}$

Running in 4 GeV region since late 2012

Beijing Electron Positron Collider (BEPCII)

- Double ring
- Large crossing angle
- Beam energy:1.0 2.3 GeV
- Energy spread:
 5.16 x 10⁻⁴
- Design luminosity:

$$1 \times 10^{33} / \text{cm}^2 / \text{s}$$
 $@\psi(3770)$

Achieved luminosity:

Beam energy measurement:

The BES-III Collaboration

The Available Data

Data sets collected by BESIII since 2009

Energy & physics	L or N	Physics Topics
3097 MeV: J/ψ	1.3 × 10 ⁹	light hadron spectroscopy
3686 MeV: ψ'	0.5 × 10 ⁹	charmonium transitions; light hadron spectroscopy
ψ(3770)	2.9 fb ⁻¹	D decays; precision flavor physics
ψ(4040)	0.5 fb ⁻¹	charmonium spectroscopy
3554 MeV	0.024 fb ⁻¹	precision determination of T mass
4230 MeV - 4260 MeV	I.9 fb ⁻¹	charmonium spectroscopy; study of Y(4260)
4360 MeV	0.5 fb ⁻¹	charmonium spectroscopy; study of Y(4360)
4100 MeV - 4400 MeV	0.5 fb ⁻¹	coarse scan; Y spectroscopy
3850 MeV - 4590 MeV	0.8 fb	fine scan; R measurement; Y spectroscopy
4600 MeV	0.5 fb ⁻¹	charmonium spectroscopy

4420 MeV

1fb⁻¹

Study of Ψ(4415)

(Red: partial or full data sets for the analyses presented today)

Physics program @ BESIII

Light hadron physics

- -meson & baryon spectroscopy
- -multiquark states
- -threshold effects
- -glueballs & hybrids
- -two-photon physics
- -p & n form-factors

Charmonium physics:

- precision spectroscopy
- transitions and decays

QCD & τ-physics:

- precision *R*-measurement
- τ decays

Charm physics:

- semi-leptonic form factors
- $-f_D \& f_{D_S}$ decay consts.
- CKM matrix: V_{cd} , V_{cs}
- D^0 - D^0 mixing and CPV
- strong phases

Precision mass measurements:

- τ mass
- $-D^0$, D^+ & D_s masses

XYZ meson physics:

- $-Y(4260) \rightarrow \pi\pi h_c$ decays
- searches for new states
-

QCD: real particles are color singlet

Baryons are red-bluegreen triplets

Mesons are coloranticolor pairs

Λ=usd

π=ūd

Other possible combinations of quarks and gluons:

Pentaquark

S= +1
Baryon

H di-Baryon

Tightly bound 6 quark state

Glueball

Color-singlet multigluon bound state

Tetraquark

Tightly bound diquark & anti-diquark

Molecule

loosely bound mesonantimeson "molecule"

qq̄ -gluon hybrid mesons

X(3872)

- well-established neutral state just at or below D⁰D*⁰ threshold
 - discovered by Belle in B decay [PRL 91, 262001 (2003)]
- decay to $(\Pi^{+}\Pi^{-})_{\rho}J/\Psi$ is atypical of conventional charmonium
- popular explanation: bound $D^0 \overline{D^{*0}}$ "molecular" state
- recent developments:
 - $J^{PC} = 1^{++}$ firmly established by LHCb [PRL 110, 222001 (2013)]
 - LHCb observes radiative transition to ψ' (arXiv:1404.0275)
 - BESIII observes production in e⁺e⁻→γX(3872)

The X(3872) was first observed by Belle, soon confirmed by several experiments

X(3872), new production mode

Phys. Rev. Lett. 112, 09200

• E _{cm} = 4230, 4260, 4360MeV [2.4fb⁻¹]

• Significance : 6.3σ

Mass: 3871.9±0.7±0.2MeV [PDG: 3871.68±0.17MeV]

Width: <2.4MeV with 90%C.L.

 X-sec. is an order higher than NRQCD calculation of continuum process.

 The radiative transition production in Y(4260) decay suggestive, but not conclusive

• Assume $B(X(3872) \rightarrow \pi^+\pi^-J/\psi) = 5\%$

$$\frac{\sigma(Y(4260) \to \gamma X(3872))}{\sigma(Y(4260) \to \pi^+\pi^-J/\psi)} \sim 11\%$$

A new decay mode of Y(4260)?

Any commonality in nature of Y(4260), $Z_c(3900)$ and X(3872)?

Z_c(3900) observed in two experiments!

BESIII

M = $3899.0\pm3.6\pm4.9$ MeV $\Gamma = 46\pm10\pm20$ MeV 307 ± 48 events, $>8\sigma$

BELLE

M = $3894.5\pm6.6\pm4.5$ MeV $\Gamma = 63\pm24\pm26$ MeV 159 ± 49 events, $>5.2\sigma$

CLEO-c Data

M = $3886\pm4\pm2$ MeV Γ = $37\pm4\pm8$ MeV 81 ± 16 events, $>5\sigma$

Zc(3900)⁰ in e⁺e⁻ → π ⁰ π ⁰J/Ψ

Has an isospin partner, $Z_c(3900)^0$?

BESIII Preliminary

- 2.8fb⁻¹ data at 10 energy points from 4260~4420 MeV
- $Z_c(3900)^0$ is observed clearly at $E_{cm} = 4230, 4260, 4360 \text{MeV}$
- BESIII preliminary results :
 - M= 3894.8 \pm 2.3 MeV, Γ = 29.6 \pm 8.2 MeV
 - Significance = 10.4 σ
 - $R(Z_c^0/\pi^0\pi^0J/\psi)=N(Z_c^0(3900))/N(\pi^0\pi^0J/\psi), E_{cm}$ dependence

Neutral isospin partner, Z_c(3900)⁰ observed

$e^+e^- \rightarrow \pi^+\pi^-h_c$

- Significant $\pi^+\pi^-h_c$ production reported by CLEO @ 4170MeV [PRL 107, 041803 (2011)]
- Correlated with observed Y(4260) or others charmonium states?
- 3.3fb⁻¹ data at 13 energy points from 3900~4420 GeV
- $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow$ hadrons [16 exclusive decay modes, ~35% of the h_c decays]

- $\sigma(e^+e^- \to \pi^+\pi^-h_c) \sim \sigma(e^+e^- \to \pi^+\pi^-J/\psi)$, but difference line shape.
- Local maximum ~ 4230 MeV, broad structure at ~ 4400 MeV?
- Correlation with Y(4260) or Y(4360) unclear

$Zc(4020)^{\pm}$ in $\pi^{\pm}h_c$

- no sharp structure in $\Pi^+\Pi^-h_c$ cross section
 - correlation with Y(4260) or Y(4360) unclear
- narrow $\Pi^{\pm}h_c$ structure observed

$$M = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV/c}^2$$

 $\Gamma = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$

- no significant evidence for $Z_c(3900) \rightarrow \pi^{\pm} h_c$
 - at $E_{cm} = 4260 \text{ MeV}$:

DD ADMINISTRA OD DITEGRA

$$\sigma(e^{+}e^{-} \to \pi^{\pm}Z_{c}(3900)^{\mp} \to \pi^{+}\pi^{-}h_{c}) < 11 \text{ pb}$$

$$\sigma(e^{+}e^{-} \to \pi^{\pm}Z_{c}(3900)^{\mp} \to \pi^{+}\pi^{-}J/\psi) = 13 \pm 5 \text{ pb}$$
BESIII Collaboration, PRL 110, 252001 (2013)

$Zc(4020)^{0}$ in $\pi^{0}h_{c}$

- Study $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ at $E_{cm} = 4230, 4260, 4360 \text{ MeV}$
- **BESIII Preliminary**
- X-sec. is about half of that charged process, agree with the expectation of isospin symmetry
- Observe $Z_c(4020)^0$ structure in $\pi_0 h_c$ mass distribution
- BESIII preliminary Result :
 - $M[Z_c(4020)^0] = 4023.6\pm2.2\pm3.9 \text{ MeV}$ $[M[Z_c(4020)^{\pm}] = 4022.9\pm0.8\pm2.7 \text{ MeV}]$
 - Width fixed to charged $Z_c(4020)$

Neutral partner of the charged Zc(4020) observed!

Observation of Zc(3900)⁰ and Zc(4020)⁰ → isovector nature of the Zc states

$e^+e^- \rightarrow \pi^+(DD^*)^- + c.c.$ at $\sqrt{s} = 4.26$ GeV

M[Z_c(3885)] = 3883.9
$$\pm$$
1.5 \pm 4.2MeV
 Γ [Z_c(3885)] = 24.8 \pm 3.3 \pm 11.0MeV
2 σ /1 σ below those of Z_c(3900)

• Bachelor π angular distribution :

favors a J p=1+ assignment

Are $Z_c(3900)$ and $Z_c(3885)$ same states?

• If $Z_c(3885)$ is $Z_c(3900)$:

$$\frac{\Gamma(Z_c(3900) \to D\bar{D}^*)}{\Gamma(Z_c(3900) \to \pi J/\psi)} = 6.2 \pm 2.9$$

Large non-DDbar coupling

Typical values : $\psi(3770)\sim500$, $\psi(4040)\sim200$

$e^+e^- \rightarrow \pi^{\pm}(D^*\overline{D^*})^{\mp}$ at $E_{cm} = 4260 \text{ MeV}$

- deviation from phase space decay
 - could be described by a charged state decaying to D*\(\overline{D}^*\)
- if $Z_c(4025)^{\pm}$ is the $Z_c(4020)^{\pm}$ observed in the $\Pi^{\pm}h_c$ spectrum:

$$\frac{\Gamma(Z_c(4020) \to D^* \bar{D}^*)}{\Gamma(Z_c(4020) \to \pi h_c)} = 12 \pm 5$$

• similar behavior to $Z_c(3900)^{\pm}$

 $M = 4026.3\pm2.6\pm3.7 \text{ MeV/c}^2$ $\Gamma = 24.8\pm5.6\pm7.7 \text{ MeV}$

the Zc states at BESIII

Channel	Mass (MeV/c²)	Width (MeV)
$\pi J/\psi$	3899.0±3.6±4.9 3894.8±2.3(Prel.)	46±10±20 29.6±8.2 (Prel.)
$(D \ \overline{D}^*)^{\pm}$	$3883.9 \pm 1.5 \pm 4.2$	$24.8 \pm 3.3 \pm 11.0$
	2σ difference	1σ difference
$\pi \mathrm{h}_{\mathrm{c}}$	4022.9±0.8±2.7 7.9±2.7±2.6	
C	4023.6±2.2±3.9 (Prel	.)
$(D^* \overline{D}^*)^{\pm}$	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$
	1σ difference	2σ difference

At least 4-quarks; Charged; Near threshold;

Isospin: I=1, hint of a new spectroscopy?

Close to D \overline{D}^* threshold (3875 MeV)

Close to D* D* threshold (4017 MeV)

- D(*)D* molecule?
- Tetraquark state?
- Cusp?
- Threshold effect?
- ...
- Whether they are two states need further understanding (couple channel analysis? quantum number determination? interference?)
 - nce*?*) 16

$e^+e^-\rightarrow \omega \chi$ c0

- No evidence at 4360MeV
- Line shape seems inconsistent with Y(4260)
- Assuming signal from a resonance, a BW fitting get a narrow structure around 4230MeV.

Summary

- Some charged Zc states were observed at BESIII using above 4GeV data.
- e⁺e⁻ $\rightarrow \gamma X(3872)$ at 4230, 4260, 4360 MeV was observed clearly. The signals are from the process Y(4260) $\rightarrow \gamma X(3872)$? More energy points are needed.
- ○Zc(3900)⁰ and Zc(4020)⁰ were found without surprise, which Indicates the isovector nature of the Zc states
- $e^+e^- \rightarrow \omega \chi_{c0}$ at 4.23 and 4.26 GeV were observed. It seems the observed signals are not from Y(4260) ?

Thanks!