PWA at BESIII

LIU Beijiang (IHEP, CAS)
For BESIII collaboration
ATHOS 2013, 21-24 May 2013, Kloster Seeon

Physics of T-charm region

Charmonium physics:

- Spectroscopy
- transitions and decays

Light hadron physics:

- meson & baryon spectroscopy
- glueball & hybrid
- two-photon physics
- e.m. form factors of nucleon

Open Charm physics:

- (semi)leptonic + hadronic decays 3000
- decay constant, form factors
- CKM matrix: Vcd, Vcs
- D⁰-D⁰bar mixing and CP violation
- rare/forbidden decays

Tau physics:

- tau decays near threshold
- tau mass scan

...and many more.

		Previous data	BESIII present & future	Goal
)	J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
	Ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
	ψ"	CLEO: 0.8 /fb	2.9/fb 3.5*CLEOc	20 /fb
	Above open charm threshold	CLEO: 0.6/fb @ ψ(4160)	2011: 0.4/fb @ ψ(4040) 2013: 1/fb@4260, 4360	5-10 /fb
	R scan & Tau	BESII	2012: 12/pb@2.23,2.4,2.8,3.4 25/pb τ scan 2013, 2014: @4260, R scan,	

Hadron spectrum

- · Hadron spectroscopy is a key tool to investigate QCD
- testing QCD in the confinement regime
- providing insights into the fundamental degrees of freedom

Where are the "missing" baryons?

LQCD results, PR D84 074508 (2011)

	* * **	***	**	*
N Spectrum	11	3	6	2
Δ Spectrum	7	3	6	6

- → Particle Data Group
 (J. Phys. G 37, 075021 (2010))
- little known (many open questions left)

- Pure isospin 1/2 filter: $\psi \to N \overline{N} \pi$, $\psi \to N \overline{N} \pi$
- ✓ Missing N* with small couplings to πN & γN , but large coupling to gggN : ψ → $N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- ✓ Interference between N* and N*bar bands in $\psi \to N \overline{N} \pi$ Dalitz plots may help to distinguish some ambiguities in PWA of πN
- ✓ Not only N*, but also Λ^* , Σ^* , Ξ^*
- ✓ High statistics of charmonium @ BES III

Where are the QCD exotics

BES provides some ideal hunting grounds Power of high statistics

2 3

L = 0.1

Partial wave analysis

Tasks:

- □ Map out the resonances
- ☐ Systematic determination of resonance properties: spin-parity, resonance parameters, production properties, decay properties, ...
 - resonances tend to be broad and plentiful, leading to intricate interference patterns, or buried under a background in the same and in other waves.

"Holography"

Event-wise ML fit to all observables simultaneously

$$\omega(\xi) \equiv rac{d\sigma}{d\Phi} = \left| \sum_{i} c_{i} R_{i} B(p,q) Z(L) \right|^{2}$$
 $dynamic$ angular

Event-wise efficiency correction

$$P(\xi) = \frac{\omega(\xi)\epsilon(\xi)}{\int \omega(\xi)\epsilon(\xi)}$$

Tools: PWA

- ✓ Decompose to partial wave amplitudes
- ✓ Make full use of data
- ✓ Handle the interference
- ✓ Extract resonance properties with high sensitivity and accuracy

GPUPWA

N. Berger, B.J. Liu and J.K. Wang, J.Phys.Conf.Ser., 219, 042031 (2010) http://gpupwa.sourceforge.net

OpenCL

Data parallelism in event-wise likelihood PWA fit

Selected results of PWA at BESIII

$$-\psi' \to \pi^0 p\bar{p}$$

Covariant tensor amplitudes generated by FDC-PWA

NIM. A534 241

http://v-www.ihep.ac.cn/~wjx/

$$-J/\psi, \psi' \rightarrow \gamma p\bar{p}$$

Covariant tensor amplitudes, EPJ A26 125

$$-J/\psi \rightarrow \gamma \eta \eta$$

Covariant tensor amplitudes, EPJ A16 537

$$-J/\psi \to \gamma \omega \phi$$

All these analyses using 2009 data sets ($225*10^6 J/\psi$, $106*10^6 \psi'$)

* Accelerated by GPUPWA

$\psi' \to \pi^0 p \bar{p}$

CLEO-c: PRD 82 092002 (2010)

Interference is NOT considered

PWA of $\psi' \to \pi^0 p \bar{p}$ at BESIII Phys.Rev.Lett. 110 (2013) 022001

PWA of $\psi' \to \pi^0 p \bar{p}$, $\pi^0 \to \gamma \gamma$ at BESIII

Resonance	$M(MeV/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	Sig.
N(1440)	$1390^{+11}_{-21}{}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
N(1520)	$1510^{+3}_{-7}^{+11}_{-9}$	$115^{+20}_{-15}^{+0}_{-40}$	19.8	6	5.0σ
N(1535)	$1535^{+9}_{-8}{}^{+15}_{-22}$	$120^{+20}_{-20}^{+0}_{-42}$	49.4	4	9.3σ
N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}^{+14}_{-50}$	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}^{+32}_{-35}$	$450^{+109}_{-94}{}^{+149}_{-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40}_{-30}^{+109}_{-0}$	$340^{+30}_{-30}^{+110}_{-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19}_{-10}{}^{+34}_{-10}$	$250^{+14}_{-24}{}^{+69}_{-21}$	78.9	6	11.7σ

2 New N* are found: N(2300) 1/2+ and N(2570) 5/2-

Enhancement at $M_{p\bar{p}}$ threshold in $J/\psi \to \gamma p\bar{p}$

Observed at BES2

Agree with spin zero expectation

 $M = 1859^{+3}_{-10}^{+5} MeV/c^2, \Gamma < 30 MeV/c^2 (90\% CL)$

Confirmed at BES3

 $M = 1861^{+6}_{-13}^{+7}_{-26} MeV/c^2, \Gamma < 38 MeV/c^2 (90\% CL)$

Many possibilities:

ordinary meson/ $p\bar{p}$ bound state/multiquark/glueball/final state interaction (FSI) **Spin-parity analysis**

is essential for determining place in the spectrum and possible nature

PWA of $J/\psi \rightarrow \gamma p\bar{p}$

- PWA of $J/\psi \to \gamma p \bar p$ was first performed
- The fit with a BW and S-wave FSI (I=0) factor can well describe $p\bar{p}$ mass threshold structure.
- It is much better than that without FSI effect ($\Delta 2 \ln L = 5$, 7.1σ)
- Different FSI models → Model dependent uncertainty

Phys. Rev. Lett. 108, 112003 (2012)

Spin parity, mass, width and branching ratio:

$$\begin{split} J^{PC} &= 0^{-+}, > 6.8\sigma \ better \ than \ other \ J^{PC} assignments, \\ M &= 1832^{+19}_{-5}(stat)^{+18}_{-17}(sys) \pm 19 (model) MeV/c^2, \\ \Gamma &= 13 \pm 39 (stat)^{+10}_{-13}(sys) \pm 4 (model) MeV/c^2, \ \Gamma < 76 \ MeV/c^2 \ (90\% \ CL), \\ B(J/\psi \to \gamma X) B(X \to p\bar{p}) &= \left(9.0^{+0.4}_{-1.1}(stat)^{+1.5}_{-5.0}(sys) \pm 2.3 (model)\right) * 10^{-5} \end{split}$$

$M_{p\bar{p}}$ threshold structure in $\psi' \to \gamma p\bar{p}$

Obviously different line shape of ppbar mass spectrum near threshold from that in J/ψ decays

PWA results:

- Significance of X(ppbar) is $> 6.9 \sigma$.
- The production ratio R: first measurement

$$R = \frac{B(\psi' \to \gamma X(p\overline{p}))}{B(J/\psi \to \gamma X(p\overline{p}))}$$

= $(5.08^{+0.71}_{-0.45}(\text{stat})^{+0.67}_{-3.58}(\text{syst}) \pm 0.12(\text{mod}))\%$

It is suppressed compared with "12% rule".

PWA Projection:

PRL 108,112003(2012)

$M_{\omega\phi}$ threshold structure in $J/\psi \rightarrow \gamma\omega\phi$

BESII PRL 96(2006) 162002

$$J/\psi \to \gamma \omega \phi$$
 (DOZI)

For X(1810):

$$M = 1812^{+19}_{-26} \pm 18 \,\mathrm{MeV/c^2}$$

$$\Gamma = 105 \pm 20 \pm 28 \text{ MeV/c}^2$$

Jpc favors 0++ over 0-+ and 2++

PWA of $J/\psi \rightarrow \gamma\omega\phi$ at BESIII

Phys.Rev. D87 (2013) 032008

Resonance	\mathbf{J}^{PC}	${\rm M}({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$> 30\sigma$
f ₂ (1950)	2++	1944	472	665 ± 40	211	2	20.4σ
f ₀ (2020)	0++	1992	442	715 ± 45	100	2	13.9σ
$\eta(2225)$	0-+	2226	185	70 ± 30	23	2	6.4σ
phase space	0-+	_	_	319 ± 24	45	2	9.1σ

X(1810) is confirmed with 0+

Is X(1810) the $f_0(1710)/f_0(1790)$ or new state?

Study of nn system

- $f_0(1710)$ was first observed in J/ψ radiative decays to $\eta\eta$ by Crystal Ball.
- LQCD predicts

0++ : 1710 ± 50 ± 80

- Crystal Barrel Collaboration (2002) analyzed the three final states $\pi^0\pi^0\pi^0$, $\eta\pi^0\pi^0$ and $\pi^0\eta\eta$ with K-matrix formalism. Found a 2⁺⁺(~1870MeV), but no f₀(1710).
- E835 (2006): ppbar $\to \pi^0 \eta \eta$, found $f_0(1500)$ and $f_0(1710)$.
- WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$.

PWA of $J/\psi \rightarrow \gamma \eta \eta$ @BESIII (arXiv:1301.0053, to appear in PRD)

Resonance	${\rm Mass}({\rm MeV}/c^2)$	${\rm Width}({\rm MeV}/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40})\times 10^{-5}$	8.2σ
$f_0(1710)$	$1759{\pm}6^{+14}_{-25}$	$172{\pm}10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74})\times 10^{-4}$	$25.0~\sigma$
$f_0(2100)$	$2081{\pm}13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28})\times 10^{-4}$	13.9 σ
$f_2^{\prime}(1525)$	$1513{\pm}5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	$11.0~\sigma$
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62}_{-0.65}{}^{+2.37}_{-2.07})\times10^{-5}$	7.6 σ

- $f_0(1710)$ and $f_0(2100)$ are dominant scalars.
- $f_0(1500)$ exists (8.2 σ).
 - Br of $f_0(1710)$ and $f_0(2100)$ are $\sim 10 \times 10$ larger than that of $f_0(1500)$
- $f_2'(1525)$ is the dominant tensor.

PWA of $J/\psi \rightarrow \gamma \eta \eta$ @BESIII: a case study Efficiency, background treatment

$$P(\xi;\alpha) = \frac{\omega(\xi,\alpha)\epsilon(\xi)}{\int d\xi \omega(\xi,\alpha)\epsilon(\xi)}$$

$$\omega(\xi,\alpha) = \frac{d\sigma}{d\Phi} = (\sum_i A_i)^2$$

$$\omega(\xi,\alpha) = \frac{d\sigma}{d\Phi} = (\sum_i A_i)^2$$
 characterized by the measurement ξ
$$P(\xi_1,\xi_2,...,\xi_n;\alpha) = \prod_{i=1}^N P(\xi;\alpha) = \prod_{i=1}^N \frac{\omega(\xi_i,\alpha)\epsilon(\xi_i)}{\int d\xi \omega(\xi,\alpha)\epsilon(\xi)} = L$$
 Standard likelihood

The probability to observe the event

$$\ln L = \sum_{i=1}^{N} \ln(\frac{\omega(\xi_i, \alpha)}{\int d\xi \omega(\xi, \alpha) \epsilon(\xi)}) + \sum_{i=1}^{N} \epsilon(\xi_i)$$
 The efficiency is included in the normalization.

$$\sigma' = \int d\xi \omega(\xi, \alpha) \epsilon(\xi) \cong \frac{1}{N_{gen}} \sum_{i=1}^{N_{acc}} \omega(\xi_i, \alpha)$$

The second term is dropped in the fit.

Observed total cross section

$$\ln L = \sum_{i=1}^{N} \ln(\frac{\omega(\xi_i, \alpha)}{\int d\xi \omega(\xi, \alpha) \epsilon(\xi)}) = \sum_{i=1}^{N} \ln(\frac{\omega(\xi_i, \alpha)}{\sigma'})$$

$$L_{S}(data) = \prod_{i}^{N_{data}} P_{S}(\xi_{i})$$

$$L_{S}(signal) = \frac{L_{S}(data)}{L_{S}(background)}$$

Likelihood is defined with signal PDF

Background subtraction

-- using n sidebands

PWA of $J/\psi \rightarrow \gamma \eta \eta$ @BESIII: a case study Selection of partial wave components

Step 1: have a starting point, according to

- 1, Previous studies;
- 2, PDG list;
- 3, Some educated guess from the distributions;
- the component of largest contribution should be chosen as the reference for the relative magnitude and relative phase.

```
We tested the following mesons listed in PDG 2012: f_2(1270), f_0(1370), f_2(1430), f_0(1500), f_2'(1525), f_2(1565), f_2(1640), f_0(1710), f_2(1810), f_2(1910), f_2(1950), f_2(2010), f_0(2020), f_0(2100), f_0(2100), f_0(2200), f_0(2300), f_0(2330), f_0(2340).
```

Step 2: add more components

- 1, Add one additional component out of the pool of candidates;
- 2, Optimize the parameters. Check the significance for each component;
- 3, Repeat 1 and 2. Keep the most significant one in your solution; Repeat 1,2,3, until there's no more significant component to add;
- → all the components in the baseline fit are > 5 sigma
- → all the possible extra components are < 5 sigma

PWA of $J/\psi \rightarrow \gamma \eta \eta$ @BESIII: a case study Systematic uncertainties in PWA

Resonance	${\rm Mass}({\rm MeV}/c^2)$	${\rm Width}({\rm MeV}/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136_{-26-100}^{+41+28}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ
$f_0(1710)$	$1759\pm6_{-25}^{+14}$	$172\pm10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	$25.0 \ \sigma$
$f_0(2100)$	$2081\pm13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ
$f_{2}^{'}(1525)$	$1513\pm5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	$11.0 \ \sigma$
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	$6.4~\sigma$
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334^{+62+165}_{-54-100}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6 σ

- Extra components [the major contribution to sys.err]
 - The interference caused by the small component can be large
 - For new observations, we quote the most conservative significance from the alternative fits
- Non-resonant contribution
- Dynamical functions (in this analysis, BW forms)
- Background treatment

Summary

- A lot of interesting results on hadron spectroscopy have been obtained at BESIII.
- BESIII took 1.2 billion J/ψ events and 0.5 billion ψ' events.

BESIII Data-taking

Look forward to many new results from BESIII!

Thank you