# Status and Prospects for Mixing & CPV Using Charm at Threshold

### Roy A. Briere Carnegie Mellon (+ CLEO & BESIII)

CKM 2012

01 Oct 2012







Pros and Cons of Threshold

CPV? Mixing? (both tough @ threshold)

What remains: Phases !

**Outlook & Conclusions** 

"Anyone who has played with these invariances knows that it is an orgy of relative phases." -- Abraham Pais, Inward Bound



There are lots of experts in the audience who know much more than me on any given topic; I assure you that any errors I may make are intentional and meant to stimulate discussion

### Pros and Cons of Threshold

#### PRO :

Unique features: Coherent D<sup>0</sup> D<sup>0bar</sup> pairs, CP+ & CP- tags Low background, constrained kinematics

#### CON:

Low statistics

# statisticsBESIII (now)20 million D pairscleaner,<br/>more modesBelle1 billionmore modesLHCbmany billionsaccessible

Especially for hadronic modes, non-threshold is often clean enough...

Low statistics are bad for both mixing and CPV But the unique features can be extremely interesting !

### CPV at Threshold

Generally, one does better elsewhere using higher statistics. But can we leverage the quantum coherence ?

Some work exists, focusing on  $D^0 D^{0bar} \rightarrow VV$ ,  $V K\pi$ 

PHYSICAL REVIEW D 81, 054032 (2010)

Extracting *CP* violation and strong phase in *D* decays by using quantum correlations in  $\psi(3770) \rightarrow D^0 \overline{D}^0 \rightarrow (V_1 V_2)(V_3 V_4)$  and  $\psi(3770) \rightarrow D^0 \overline{D}^0 \rightarrow (V_1 V_2)(K\pi)$ 

Jérome Charles,<sup>2</sup> Sebastien Descotes-Genon,<sup>3</sup> Xian-Wei Kang,<sup>1,4</sup> Hai-Bo Li,<sup>1</sup> and Gong-Ru Lu<sup>4</sup>

Shows sensitivity to strong phase and CPV; but does need high statistics

Other ideas? Look for exceptions to CP+ vs. CP-? (probably small)

### **D<sup>0</sup>** Mixing @ $\psi$ (3770)

There's a very nice well-known D<sup>o</sup> mixing signature at  $\psi$  (3770) No DCSD: cancels with these correlated D pairs Like-sign K<sup>-</sup> $\pi$ <sup>+</sup> pairs (+ c.c.) are pure mixing !

But it's HARD in practice :

#events =  $N_{DD} B_{K\pi^2} \epsilon_{K\pi^2} (x^2 + y^2)$   $N_{DD} = 3.7 \times 10^6 / \text{fb}^{-1} B_{K\pi^2} = 1.5 \times 10^{-3}$   $\epsilon_{K\pi^2} = 0.4 (x^2 + y^2) = 1 \times 10^{-4}$ Result: #events = 0.2 / fb<sup>-1</sup>

The only number we have control over is the efficiency,  $\epsilon_{K\pi}$ But PID needs to be ~tight, to avoid background from  $K\pi$  swaps ...

Of course, this is not the only way to access mixing at threshold, but it does roughly set the scale.

# Our Remaining Portfolio

### Already discussed at this workshop

Charm Mixing at Threshold (Quantum Correlations) at CLEO Werner Sun WG VIII Yesterday "TQCA": The Quantum Correlation Analysis (261 rates !) strong K $\pi$  phase  $\delta_{K\pi}$ ; mixing parameters

However...

These speakers were burdened with *actual results*...

I have more freedom to discuss the big picture

# **TQCA: K**π Strong Phase

In my younger days, I learned : No strong FSI:  $\overline{A} = A^*$  With FSI:  $\overline{A} = A^*e^{i\delta}$  (in a convenient phase convention) weak phase is "inside A" and flips sign; strong phase doesn't Here, A & A are charge-conjugate amplitudes Almost this simple for us today, except : We are looking at relative phase between a Cabibbo-favored and a DCSD amplitude Can vary across a Dalitz plot

#### Two-body case:

```
Trivial phase space \rightarrow one phase parameter
(beware varying definitions, however...)
K\pi Mixing results: measure x', y'; we need to rotate to get x,y
```

```
From W. Sun's talk:cos \delta_{K\pi} = 0.81 + 0.22 - 0.18 + 0.07 - 0.05CLEO-c onlycos \delta_{K\pi} = 1.15 + 0.19 - 0.17 + 0.00 - 0.08w/ external inputs
```

# Multi-Body Mixing Analyses

Dalitz model: Use N amplitudes for both CF and DCSD: 2N parameters each flavor: N amplitudes, N-1 relative phases

#### **Concentrate on Phases**

2(N-1) relative phase parameters in 2 separate Dalitz plot fits But there are 2N - 1 = 2(N-1) + 1 physical phase parameters Need threshold to get relative CF-to-DCSD phase for Kn $\pi$ 

#### Relevant current case:

 $K\pi\pi^0$  mixing analysis from BaBar; extracts x", y" Relative CF-DCSD phase for K $\rho$  isobar amplitude unknown

#### We can measure this at threshold !

but... we haven't, we measured something else instead (more later)

The point is that we can help these mixing analyses...

### "Alphabet Techniques" for $\phi_3/\gamma$ : GLW / ADS / GGSZ \*



Triangle relation shown here is used to deal with a priori unknown strong phase Other methods are similar in spirit; interference of common final states CP eigenstates are replaced by CF & DCSD, or special cases like  $K_S \pi \pi$  $\Rightarrow$  Measure more observables than unknowns to constrain phases.

\*MANY talk in WG V on these ! 01Oct2012

\*For simplicity, we're ignoring discrete ambiguities... RABriere@CKM2012 9

# Dealing with Strong Phases

The GLW / ADS / GGSZ methods are all designed to help us deal with a priori unknown strong phases

But, different cases have different nuances

#### KK, ππ, etc. :

GLW doesn't need external phase input; in fact it only has a strong B phase Strong D phase is known for CP eignestates : 0 or  $\pi$ 

#### **Kn**π :

ADS involves a strong D phase between CF and DCSD amplitudes Could live without threshold input, but it's much nicer to add it in

#### K<sub>S</sub>ππ :

In GGSZ, we have a mixed-CP mode (messy), but it is still self-conjugate (nice): both flavors are together in one Dalitz plot Thus, one can measure strong phase without threshold data, but it has been pointed out that threshold can still help a lot

Probably the most famous/popular/topical use of threshold phase information ⇒ threshold data leads to model-independent results

# Multi-Body "Coherence Factors"

#### **Coherence Factors**

2-body Interfering Amplitudes: cross-term has a "2" & a relative phase

#### **3-body generalization?**

If we integrate over Dalitz plot: can write non-int. terms using averaged amplitudes, BUT we need an extra Re<sup>-ið</sup> "fudge factor" in the interference term...

**Two body:** 
$$|A_1 + A_2|^2 = |A_1^2 + A_2^2 + 2A_1A_2e^{-i\delta}|$$
 1,2 = CF, DCSD

Multi body  $\int dDalitz |A_1 + A_2|^2 = |A_1^2 + A_2^2 + 2Re^{-i\delta}A_1A_2|$ 

The bold **A** are real averaged amplitudes.

But in interference term, the relative phase matters, AND changes across Dalitz plot: Define: R  $e^{-i\delta}$  = (actual intergrated cross-term)/(naïve  $A_1 A_2$ )

$$A_{K^{\pm}\pi^{\mp}\pi^{0}}^{2} = \int |\mathcal{A}_{K^{\pm}\pi^{\mp}\pi^{0}}(\mathbf{x})|^{2} d\mathbf{x}$$
$$R_{K\pi\pi^{0}}e^{-i\delta_{D}^{K\pi\pi^{0}}} = \frac{\int \mathcal{A}_{K^{-}\pi^{+}\pi^{0}}(\mathbf{x})\mathcal{A}_{K^{+}\pi^{-}\pi^{0}}(\mathbf{x})d\mathbf{x}}{A_{K^{-}\pi^{+}\pi^{0}}A_{K^{+}\pi^{-}\pi^{0}}}$$

01Oct2012

RABriere@CKM2012

### **CLEO** Coherence Factors



12

# **BESIII Ongoing Analyses**

"TQCA" Analysis

Correlations with K $\pi$ , flavor, CP tags ( $\delta_{K\pi}$ , y, ...) perhaps fewer modes than CLEO-c at first, but 3.5x data

CKM γ-related Analyses

 $K_S \pi \pi$  tagged Dalitz analysis( c<sub>i</sub>, s<sub>i</sub> ) $K \pi \pi^0$  coherence factor( R, δ )

More will be added... (suggestions welcome!)

### Future Directions I

Consider D  $\rightarrow K_S \pi \pi \pi^0$ 

5-dimensional Dalitz space: a bit daunting...

Impractical to bin in this space! But a totally-integrated coherence factor risks averaging out effects (c.f.  $K\pi\pi\pi$ )

But... in both of these 4-body modes, threshold exp'ts can look for regions of high coherence
We need to avoid bias of hunting till we find a large result...
Obvious places to check: guided by resonance structure

What about CP- pairs from D<sup>0</sup> D<sup>0bar</sup> γ ? Is this only "more of the same", or is there a new twist?

### Future Directions II

Many pioneering current B factory analyses, but more precision to come from LHCb & BelleII + SuperB

Fortunately, charm will advance as well

Prospects for a leap ahead in charm threshold statistics: ~100x a final BESIII dataset of 10 fb<sup>-1</sup> (?)

Dedicated Novosibirsk tau-charm factory ! SuperB: charm threshold running is in the plan (for both: see plenary talk by M. Roney)

A large increase like this can support new ideas...

### Conclusion

Threshold charm lags B factories and hadron colliders in statistics

But unique features exist at threshold ! For us, the main ones are:

Coherent D<sup>0</sup> D<sup>0</sup> pairs

CP and other tags to access phases

We contribute indirectly to mixing, and to other areas (CKM angle)

BESIII welcomes input on these types of analysis: priorities, packaging of results, ...

New machines will keep this area very active for years to come

### Acknowledgements

Thanks to Werner Sun for helpful discussions, Chunlei Liu for countless conversations, and *many* authors for their insightful papers !

### **Selected Theory References**

#### **Quantum Correlations**

Goldhaber & Rosner, Phys. Rev. D15, 1254 (1977) Gronau, Grossman & Rosner, Phys.Lett. B508, 37 (2001) Atwood & Petrov, Phys. Rev. D71, 054032 (2005) [2002 eprint: hep-ph/0207165] Asner & Sun, Phys. Rev. D73, 034024 (2006); E: ibid, D77, 019901 (2008)

DCSD mixing background cancels for correlated D pairs
Bigi & Sanda, Phys. Lett. B171, 320 (1986) [see Ref. 5 for other contributors...]
Attention PDG: K<sub>s</sub> != 1/2 of K<sup>0</sup> or K<sup>0bar</sup>
Bigi & Yamamoto Phys. Lett. B349, 363 (1995)
B physics: CKM gamma with "DK" modes
Gronau & London, Phys. Lett. B253, 483 (1991) "GLW": SCS CP-eigenstates
Gronau & Wyler, Phys. Lett. B265, 172 (1991)
Atwood, Dunetz & Soni, Phys. Rev. Lett. 78, 3257 (1997) "ADS": CF + DCSD

Atwood, Dunetz & Soni, Phys. Rev. Lett. 78, 3257 (1997) ADS : CF + DC Atwood, Dunetz & Soni, Phys. Rev. D63, 036005 (2001)

Giri, Grossman, Soffer & Zupan, Phys. Rev. D68, 054018 (2003) "GGSZ" Bondar & Poluektov, Eur. Phys. J. C 47, 347 (2006) CF multi-body: larger strong phases? Bondar & Poluektov, Eur. Phys. J. C 55, 51 (2008)

Atwood & Soni, Phys. Rev. D68, 033003 (2003)

#### $D^0$ Mixing with $K_S K \pi$

Malde & Wilkinson, Phys. Lett. B701, 353 (2011)

Coherence factors