

Hadron Spectroscopy

Experimental Progress on Charmonium–like Studies —

Haiping Peng penghp@ustc.edu.cn

University of Science and Technology of China

ICHEP2014, 2-9th July, Valencia, Spain

Topics can be covered

Light hadron

- Scalar mesons spectroscopy
- Quantum number exotic states, glueball, multi-quarks
- Excited baryon

Charmonium

.

- Conventional charmonium spectroscopy
- Charmonium-like states
- Transition and production
- Buttomnium

.

08/07/2014 H.P. Peng

Spectroscopy Results @ ICHEP2014

LHCb	Radiative decays of X(3872) Amplitude fits of Zc(4430) Production of χ_b (1P, 2P, 3P) states	T. Skwarnichi
Belle	Bottomonia transitions via h meson Observation of $e^+e^- \rightarrow \chi_b \omega$ Rb scan Observation of Z ⁺ (4200) in B $\rightarrow J/\psi$ K π Search for X-like states in decays with η_c Search for Y(1,2S) decay to double-charmonia Search for $e^+e^- \rightarrow \chi_c \gamma$	P. Krokovny
Babar	Study of B ^{0,±} \rightarrow J/ ψ K ⁺ K ⁻ K ^{0,±} and search for structure in the J/ $\psi \phi$ system Bottomonium spectroscopy and radiative transition involving the χ_{bJ} (1P,2P)	V. Santoro
Belle& Babar	$\begin{split} &Y(nS) \rightarrow \overline{d} + X \\ &\Lambda_c^+ \rightarrow pK^-\pi^+ \\ &Mass and width of \Sigma_c(2455)^{0/++}, \Sigma_c(2525)^{0/++} \\ &Search for \ \Xi_{cc}^{+(+)}, \Xi_c \\ &Y(1S, 2S) \rightarrow \Lambda \overline{\Lambda} X \end{split}$	M. Z. Wang

Spectroscopy Results @ ICHEP2014

S. S. Fang

BESIII

Observation of X(1840) in J/ $\psi \rightarrow \gamma 3(\pi^+\pi^-)$

PWA of J/ $\psi \rightarrow \gamma \eta \eta$ η and η' physics PWA results on N* Baryons in $\psi' \rightarrow \pi^0 pp$ Observation of Z_c(3900) Observation of Z_c(4020) in e⁺e⁻ $\rightarrow \pi \pi h_c$ Observation of Z_c(3885) and Z_c(4025)

PWA of $J/\psi \rightarrow \gamma \omega \phi$

ATLAS&CMSQuarkonium production at LHC ATLAS&CMSH. K. WohriVEPP-2000Results on e+e-→hadrons cross sectionT. V. DimovaBabarStudy of e+e- annihilation to hadrons with ISR methodV. DruzhininMeasurement of collins asymmetries in inclusive production of pion pairsV. Druzhinin

- This talk : Charmonium-like states
- Apologies : I can not cover all results

Hadrons: Normal & Exotic

- **Experiments** : •
 - Hadrons are composed of 2 (meson) or 3 (baryon) quarks
 - Described very well in quark model (QM)
- QCD suggests:
 - Confinement : stable hadrons need to be colorless
 - Gluon-gluon interactions : hadron with gluons (hybrids and glueballs) could exist
 - Allow hadrons with N_{guarks}≠2, 3 (multi-quarks)

a q

Can we find evidence for these interesting exotic hadrons?

A long history of searching for the exotic hadron, no solid conclusion was reached in past a few decades, some hints on charmomium-like and bottomnium-like particles, recently.

ICHEP 2014, Valencia, Spain

Results from These Experiments

+ CLEOc, CDF, CMS/ATLAS ...

Charmonium Spectroscopy

played important role in establishing QCD as theory of strong interactions

- All States below charm threshold have been
 observed
 - Charm anti-charm potential model described spectrum very well
- Many missing states above charm threshold.
- New states above charm threshold appear
 - Charmonium in final states
 - Not an obvious charmonium state

Not all of them are charmonia!

- What are they?
- Charmonium?
- Hybrid?
- Tetraquark?
- Molecule?
- Non-resonance?

What is X(3872) ?

What is X(3872)

- Observed by Belle, confirmed by several experiments
 - Very close to $\ \overline{D}{}^0D^{*0}$ threshold,
 - Very narrow, < 1.2 MeV</p>
- J^{PC}=1⁺⁺, a definitive determination by LHCb :
 - Decay to $\gamma J/\psi$ or ψ (2S) indicate C-parity as + [Belle, Babar, LHCb]
 - Reduce possibility to 1⁺⁺, 2⁻⁺ by CDF [PRL 98, 132002 (2007)]
- Production :
 - In B decays KX similar to charmonia,
 - K*X smaller than charmonia
 - KπX (see Pavel Krokovny's talk on last Tursday)
 - In pp/pp collision rate similar to charmonia
 - Radiative transition of the excited vector charmonium(like)? J^{pc}=1⁺⁺
- Decay modes :
 - $\ \pi^+\pi^-(\rho)J/\psi, \ \pi^+\pi^-\pi^0(\omega)J/\psi,$
 - − γJ/ψ, γψ(2S)
 - $D^0 \overline{D}{}^0 \pi^0$, $D^0 \overline{D}{}^{*0}$
 - Not observed in $\eta_c h$ decay (see Pavel Krokovny's talk last Tursday)

Observation of $e^+e^- \rightarrow \gamma X(3872)$

- Observed signal @E _{cm} = 4230, 4260, 4360MeV [2.4fb⁻¹]
 - Significance : 6.3σ
 - Mass : 3871.9±0.7±0.2MeV
 - [PDG:3871.68±0.17MeV]
 - Width : <2.4MeV with 90%C.L.

- X-sec. is an order higher than NRQCD calculation of continuum process.
- The radiative transition production in Y(4260) decay suggestive, but not conclusive
- Assume $B(X(3872) \rightarrow \pi^+\pi^- J/\psi) = 5\%$

σ(Y(4260)→γX(3872)) σ(Y(4260)→ $π^+\pi^-J/ψ$)~11%, large ratio !

A new decay mode of Y(4260)?

Any commonality in nature of Y(4260), Z_c(3900) and X(3872)?

The Nature of X(3872)

Possible Theory Speculation

- Loosely $\overline{D}^{0}D^{*0}$ bound state (like deuteron?)?
- Mixture of χ'_{c1} and $\overline{D}{}^{0}D^{*0}$ bound state?
- Many other possibilities

Ratio of X(3872) $\rightarrow \gamma \psi$ (2S) to $\gamma J/\psi$

Theoretical predictions :

- DD⁺ molecule : (3-4)×10⁻³
- Charmonium : 1.2–15
- Mixture : 0.5–5

Not a pure DD* molecule

A mixture of a DD* molecule and a χ_{c1} charmonium ?

Y-family States

The history : Y(4260)/Y(4008)

- Y(4260) first observed in J/ψπ⁺π⁻ by BaBar, and confirmed by CLEO and Belle
- Belle observed additional Y(4008)
- BaBar updated with more data, no Y(4008) observed,
- J/ψ is the only firmly established decay mode
 - $-\,$ Belle result limits $\sigma(KKJ/\psi)\,$ to about 1/10 of $\pi\pi J/\psi\,$

[PRD 89, 072015 (2014)]

Y(4260)/Y(4008)

- Fit with two coherent resonances $|BW_1+BW_2*exp(if)|^2+bkg$.
- Mass of Y(4008) is lower than previous measurement
- Fit quality: χ^2 /ndf=101/84, confidence level is 9.3%

Confirmed two resonances, agrees with Belle's previous results. Inconsistent on Y(4008) : BESIII data can clarify

Y(4360)/Y(4660)

08/07/2014 H.P. Peng

$e^+e^- \rightarrow \pi^+\pi^-h_c$ @BESIII

- Significant $\pi^+\pi^-h_c$ production reported by CLEO @ 4170MeV [PRL 107, 041803 (2011)]
 - Correlated with observed Y(4260) or others charmonium states?
- 3.3fb⁻¹ data at 13 energy points from 3900~4420 GeV [$h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow hadrons$, 16 exclusive decay modes]

- $\sigma(e^+e^- \rightarrow \pi^+\pi^-h_c) \sim \sigma(e^+e^- \rightarrow \pi^+\pi^-J/\psi)$, but different line shape.
- Local maximum ~ 4230 MeV, broad structure at ~ 4400 MeV?
- Correlation with Y(4260) or Y(4360) is unclear
- More data around 4230MeV and above 4400MeV is very help.

Y states

- In QM, five states expected between 4 and 4.7GeV
 - 3S/Y(4040), 2D/Y(4160), 4S/Y(4415), 3D, 5S
- But seven states observed:
 - Y(4008), Y(4040), Y(4160), Y(4260), Y(4360), Y(4415), Y(4660)
- Y(4260), Y(4360) and Y(4660) have similar properties
 - All produced in e^+e^- collisions
 - narrow structure above charm threshold
 - Strongly couple to charmonium states
 - No evidence in open-charm process and R-value scan,
 Large BESIII R value data sample may confirm/improve
- $e^+e^- \rightarrow \pi^+\pi^-h_c$ and $\omega \chi_{c0}$ cross section line shape
 - Makes situation more complicate
 - $-\,$ Have fine structures at 4230MeV, strong couple to $\omega\chi_{c0}?$
- What are these Y states
 - Hybrid? Molecule? Threshold effect?

Unclear, need to be understood

The most promising way to searching for the exotic hadrons

- Decay into a charmonium or D^(*)D^(*) pair
 - $-\,$ thus contains hidden-cc pair
- Have electric charge,
 - thus has two more light quarks

At least 4 quarks, not a conventional meson

- Observed in final states :
 - $\pi^{\pm} J/\psi, \pi^{\pm} \psi(2S), \pi^{\pm} h_{c}, \pi^{\pm} \chi_{cJ}, (D^{(*)} \overline{D}^{(*)})^{\pm}, \dots$
- Experimental search:
 - BESIII/CLEO-c : $e^+e^- \rightarrow \pi^{\pm} + Exotics, \dots$
 - Belle/BaBar : e⁺e⁻→(γ_{ISR})π[±]+Exotics,
 - Belle/BaBar/LHCb: $B \rightarrow K^{\pm}+Exotics, ...$

Observation of Z_c(3900)[±]

BESIIII

M = $3899.0 \pm 3.6 \pm 4.9$ MeV Γ = $46 \pm 10 \pm 20$ MeV 307 ± 48 events, >8 σ

BELLE

M = $3894.5 \pm 6.6 \pm 4.5$ MeV $\Gamma = 63 \pm 24 \pm 26$ MeV 159 ± 49 events, > 5.2σ

CLEO-c Data M = 3886±4±2 MeV

 $\Gamma = 37\pm4\pm8$ MeV 81 ± 16 events, >5 σ

08/07/2014 H.P. Peng

e⁺e⁻→π[±](DD̄*)[∓] @4.26GeV

$Z_c(3900)^0$ @e⁺e⁻ $\rightarrow \pi^0 \pi^0 J/\psi$

Has an isospin partner, Z_c(3900)⁰ ? **BESIII Preliminary**

- 2.8fb⁻¹ data at 10 energy points from 4230~4420 MeV
- $Z_c(3900)^0$ is observed clearly at E_{cm} =4230, 4260, 4360MeV
- BESIII preliminary results :
 - M= 3894.8 \pm 2.3 MeV, Γ = 29.6 \pm 8.2 MeV
 - Significance = 10.4 σ

Neutral isospin partner, Z_c(3900)⁰ observed

08/07/2014 H.P. Peng

Observation of Z_c(4020)[±]

- Narrow $\pi^{\pm}h_{c}$ structure observed
 - M = 4022.9±0.8±2.7 MeV;
 - Γ= 7.9±2.7±2.6 MeV
 - Significance : 8.9 σ
- No significant evidence for $Z_c(3900) \rightarrow \pi^{\pm}h_c$
 - Significance 2.1 σ
 - ─ @ Ecm = 4260 MeV
 - $\sigma(e^+e^- \rightarrow \pi^\pm Z_c(3900)^\mp \rightarrow \pi^+\pi^-h_c) < 11~{\rm pb}$

 $\sigma(e^+e^- \to \pi^\pm Z_c(3900)^\mp \to \pi^+\pi^- J/\psi) = 13\pm 5~{\rm pb}$

- Deviation from phase space decay
 - − M = 4026.3±2.6±3.7 MeV
 - $-\Gamma$ = 24.8 \pm 5.6 \pm 7.7 MeV
 - Significance : 10σ

Are $Z_c(4020)$ and $Z_c(4025)$ same particle?

• If $Z_c(4025)$ is the $Z_c(4020)$

 $\frac{\Gamma(Z_c(4020) \to D^*\bar{D}^*)}{\Gamma(Z_c(4020) \to \pi h_c)} = 12 \pm 5$

$Z_{c}(4020)^{0} @ e^{+}e^{-} \rightarrow \pi^{0}\pi^{0}$

- Study $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ at $E_{cm} = 4230, 4260, 4360 \text{ MeV}$
- X-sec. is about half of that charged process, agree with the expectation of isospin symmetry
- Observe $Z_c(4020)^0$ structure in $\pi_0 h_c$ mass distribution
- BESIII preliminary Result :
 - M[Z_c(4020)⁰] = 4023.6±2.2±3.9 MeV
 - $[M[Z_{c}(4020)^{\pm}] = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}]$
 - Width fixed to charged $Z_c(4020)$
 - Significance : $>5\sigma$

Neutral partner of charge Z_c(4020) observed!

Observation of neutral $Z_{c}(3900)$ and $Z_{c}(4020)$

Isovector nature of Z_c states established

Z_c (4430) in B⁰ $\rightarrow \psi$ (2S)K π

- First charged charmonium-like particle, reported by Belle
- Babar : the reflections of K*states, but not contradict to Belle
- LHCb established its existence, J^p=1⁺ unambiguously
 [4D model-independent approach, Argand diagram]
- Belle's updated results confirmed its existence, J^p favored 1⁺
- Mass and width are higher than that of previous Belle results

Second Z_c observed by two experiments, The existence of $Z_c(4430)$ or $Z_c(4480)$ established !

A Company of the second second

$B^0 \rightarrow J/\psi k\pi$ @ Belle

- 4D amplitude analysis
- New Z_c (4200) is found ($J^P = 1^+$) with 7.2 σ :

 $M = 4196^{+31+17}_{-29-6} \text{ MeV}/c^2, \ \Gamma = 370^{+70+70}_{-70-85} \text{ MeV}.$

- Exclusion levels (J^p=0⁻, 1⁻, 2⁻, 2⁺) : 6.7σ , 7.7σ, 5.2σ, 7.6σ
- $Z_{c}(4430)$ is also found (4σ) , $\frac{\mathcal{B}(Z_{c}(4430)^{+} \rightarrow \psi(2S)\pi^{+})}{\mathcal{B}(Z_{c}(4430)^{+} \rightarrow J/\psi\pi^{+})} \sim 10$

A new charged charmonium-like

particle, Z_c(4200) ?

A new Z_c(4430) decay mode? Need confirmation!

see Pavel Krokovny's talk on last Tursday

Three established charged charmonium-like structure Z_c^{\pm}

$Z_{c}(3900)^{\pm}$

- Narrow charged structure above (DD*)[±] mass threshold
- Observed in $\pi^{\pm}J/\psi$ final state
- Decay to (DD^{*})[±] and π[±]J/ψ in ratio of 6±3:1
- Neutral isospin partner Z_c(3900)⁰
- J^p=1+
- Production seems correlated with Y(4260) decay

Z_c(4020)[±]

- Narrow charged structure above (D*D*)[±] mass threshold
- Observed in $\pi^{\pm}h_{c}$ final state
- Decay to (D*D^{*})[±] and π[±]h_c in ratio of 12±5 : 1
- Neutral isospin partner Z_c(4020)⁰
- unknown
- Production correlated with Y(4260) or Y(4360) is unclear

Z_c(4430)[±]/ Z_c(4480)[±]

- Charged structure above (D₁D^{*})[±] mass threshold
- Observed in π[±]ψ(2S), evidence decay to π[±]J/ψ
- Unknown
- Unknown
- J^p=1+
- Production in B decay

Three Z $_{c}^{\pm}$ need further confirmation

- + Z_c(4200) observed in B—J/ ψ K π decay
- Z_c(4050), Z_c(4250) observed in B⁰ \rightarrow K⁻ π ⁺ χ _{c1}

PRD 78, 072004 (2008)

Nature is unclear

- New type of QCD state or dynamically generated structure?
- One certainty : not conventional charmonium

Controversy on $B \rightarrow K(J/\psi \phi)$

- + Y(4140) and Y(4274) was first observed by CDF in $B^+{\rightarrow}J/\psi\phi K^+$
- LHCb did not observed the two resonances
- CMS confirmed the results
- D0 showed hints for the two Y resonances

See Valentina Santoro's talks on last Thursday

resonance behavior

Higher statistics and a full Dalitz

plot analysis is need

Summary & Perspectives

- In light hadron, a lot of puzzles and controversies remain to be solved
- > In charmonium-like (bottomnium-like), a lot of new observations in last decade
 - X(3872):
 - Well established, but nature is unclear
 - Observed in Y(4260) radiative decay : any correlation with Y(4260) and Z_c(3900)?
 - Y states :
 - The existence Y(4008) need confirmed
 - Inconsistent line shape from $e^+e^- \rightarrow \pi \pi h_c$, $\omega \chi_{c0}$: fine structure exist around 4230MeV?
 - Z_c states :
 - Three (Z_{c(}3900), Z_c(4020), Z_c(4430)) established, Z_c(4050), Z_c(4250), Z_c(4200) need confirmation
 - Spin-parity measured to be 1⁺, isovector nature established, origin is unclear

Nature are unclear, but not conventional charmonium

- What may help:
 - Measure and understand transitions between states, explore all possible decay modes
 - $-\,$ More data at a variety of E_{cm} may shed light in the study.
 - Strong similarities between charmonium and bottomonium system

Summary & Perspectives

Experimental challenges

- High precision measurements : High statistics, high precision data, advance analysis tools etc
- Global view : different experiments, different production and decay mechanisms

Experimental opportunities

- Belle, Babar, BESIII@BEPCII,
 - Have remarkable success and made significant contributions on charmonium (-like) study
 - Can immediately add our understanding the meson spectrum above the open charm threshold
- Coming Belle II, Panda, and updated LHC and others experiments: CLAS12, GlueX
 - Promise to have much more fruitful results on spectroscopy.

Thank You!

Backup Slide

Exotic Meson (Charmonium-Like)

Molecular states :

- Loosely bound states of a pair of mesons,
- bound by the long-range color-singlet pion exchange,
- weakly bound, mesons tend to decay as if they were free.

Tetraquarks :

- u c ·
- bound states of four quarks,
 - bound by colored-force between quarks,
 - decay through rearrangement,
 - many states with the same multiplet, some are with non-zero charge, or strangeness

Hybrid :

- comic
- bound states with a pair of quarks and one excited gluon
- Lattice and model predictions for lowest lying charmonium hybrid m~4200MeV

Observation of X(3872)

The X(3872) was first observed by Belle, soon confirmed by several experiments

Stimulated special interest in its nature !

Well-established neutral state

Mass : Very close to $\overline{D}^0 D^{*0}$ threshold Width : Very narrow, < 1.2 MeV

J^{pc} of the X(3872) is 1⁺⁺

X(3872)→γJ/ψ

 $X(3872) \rightarrow \pi^+\pi^- J/\psi$

08/07/2014 H.P. Peng

$Z_c(3900)^0$ @e⁺e⁻ $\rightarrow \pi^0 \pi^0 J/\psi$

Has an isospin partner, $Z_c(3900)^0$?

586Pb⁻¹@ 4.17GeV

3900

4000 $M_{max}(\pi^0 J/\psi)$ (MeV)

3800

- 2.8fb⁻¹ data at 10 energy points from 4260~4420 MeV
- $Z_c(3900)^0$ is observed clearly at E_{cm} =4230, 4260, 4360MeV

BESIII Preliminary

- BESIII preliminary results :
 - M= 3894.8 \pm 2.3 MeV, Γ = 29.6 \pm 8.2 MeV
 - Significance = 10.4 σ
- $R(Z_c^0/\pi^0\pi^0J/\psi)=N(Z_c^0(3900))/N(\pi^0\pi^0J/\psi)$, E_{cm} dependence

Neutral isospin partner, $Z_c(3900)^0$ observed

Counts / 15 MeV

Data

ase Space

/w Sidebands

3700

$e^+e^- \rightarrow \gamma_{ISR} J/\psi \pi^+\pi^-$

 $\Gamma(Y(4260)) = (73^{+39}_{-25}(\text{stat}) \pm 5(\text{syst})) \text{ MeV}/c^2.$

$Z_{c}(4050)$, $Z_{c}(4250)$

$e^+e^- \rightarrow \pi^+\pi^-h_c$ Interpretation

- Fit with two different scenarios :
 - Three body PHSP + a narrow resonance
 - Two resonances

Very likely a narrow structure around 4.23GeV

- Others possible interpretation
 - A relative S-wave DD₁ molecular Y(4260) and a non-resonant background term [arXiv:1310.2190]
 - Y(4260) and Y(4360) are mixture of two hadro charmonium states
 [Mod. Phys. Lett. A 29, 1450060].
- Various QCD calculate indicate :
 - Charmonium-hybrid lies in mass region of two Y states.
 - cc tend to be in a spin-singlet state
 - Couple strong to a spin-singlet charmonium state $\rm h_{c}$

More high precision measurement at above 4.42GeV and around 4.22GeV are desired to better understand the structure.

Summary & Perspectives

1. In light hadron, a lot of puzzles and controversies remain to be solved

2. In charmonium-like (bottomnium-like), a lot of new observations in last decade

• X(3872):

- Well established : mass, width, spin-parity, close to $D^0\overline{D}^{*0}$ mass threshold
- − Nature is unclear : large ratio of X(3872)→ γ ψ(2S) to X(3872)→ γ J/ψ, isospin violation
- Observed in Y(4260) radiative decay : any correlation with Y(4260) $\,$ or Z_c(3900)?
- Y states :
 - All produced in e^+e^- collisions, narrow structure above charm threshold, Y(4008) need confirmed
 - Only one established decay model, strongly couple to charmonium, no evidence in open-charm process and R-value scan
 - Inconsistent line shape of $e^+e^- \rightarrow \pi \pi h_c$, $\omega \chi_{c0}$ make the situation more complicate
 - Nature unclear : Hybrid, Molecule, Threshold effect, Triangle singularity....?
- Z_c states :
 - Three (Z_{c(}3900), Z_c(4020), Z_c(4430)) established, Z_c(4050), Z_c(4250), Z_c(4200) need confirmed
 - Narrow charge structure above $D(*)\overline{D}(*)$ threshold, large non-DD decay ratio
 - $-\,$ Isospin triplet partner observed, spin-parity measured to be 1^+
 - Origin is unclear
 - Nature unclear : New type QCD states or dynamically generated structure? But not conventional charmonium
- What will help:
 - Measure and understand transitions between states is essential, explore all possible decay modes of new state
 - $-\,$ More data at a variety of E_{cm} may shed light in the study.
 - Strong similarities between charmonium and bottomonium system.

Summary & Perspectives

3. Experimental challenges

- High precision measurements : High statistics & precision data, advance analysis tools etc
- Global view : different experiments, different production and decay mechanisms

4. Experimental opportunities

- BESIII@BEPCII
 - $-\,$ Is the only experiment currently taking data using e^+e^- collisions,
 - Already made significant contributions to charmonium (-like) in region above the open-charm threshold
 - Can immediate add to our understanding the cc meson spectrum above the open-charm threshold
- Belle, Babar and Belle II
 - Belle and Babar have remarkable success in quarkonium spectroscopy,
 - No doubt for further success for Belle II with the upgraded detector and a factor of fifty increased luminosities
- LHC
 - LHCb had made great measurement improved the results from B-Factory : a definitive determination J^{pc} of X(3872) etc.
 - ALTAS and CMS have proved to have capabilities working on spectroscopy : Confirmed Y(4140) in J/ $\psi \varphi$ [CMS] , discovered χ_{bJ} (3P) [ATLAS]
 - Promise to be even more fruitful sources after a two-year shutdown for an upgrade
- PANDA @ FAIR
 - Designed to study the charmonium (-like) states, expected to begin data taking around 2019
 - Can produce all J pc states directly, as long as have large branching fractions to $p\overline{p}$
 - Have stronger coupling to tetraquark charmonium than that of conventional charmonium?

Charmonium Spectroscopy

