D⁺ Leptonic and D⁰ Semileptonic Decays First Results from BESIII

Ron Poling School of Physics and Astronomy College of Science and Engineering University of Minnesota

Window on Weak and Strong Physics

Leptonic Decay

- Decay constant f_D incorporates the strong interaction effects (wave function at the origin)
- Use charm leptonic decays to validate theory (LQCD) and apply to B mixing, which requires f_B
- Multiple tests with charm: f_D , f_{Ds} (esp. ratios)
- Sensitivity to New Physics

Window on Weak and Strong Physics

Semileptonic Decay

- Use Strong Interaction theory (LQCD) for form factor, extract CKM
- Use other measurements and unitarity for CKM and test theory
- Theoretical uncertainties can be reduced in determinations of $|V_{ub}|$ if FF calculations can be validated with charm
- Multiple tests available, semileptonic D decays to pseudoscalar mesons are cleanest

5 July 2012

Window on Weak and Strong Physics

- Widths of mixing and |V_{ub}| bands will be reduced as charm validates LQCD
- Long-term goal: Over-constrain CKM and search for New Physics

Charm Physics at Threshold

- At $\psi(3770)$ charm production is $D^0\overline{D}^0$ and D^+D^-
- Fully reconstruct about 15% of *D* decays

$$\Delta E = E_D - E_{\text{Beam}}$$
$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$

 Hadronic tag on one side gives "beam" of D⁰ or D⁺ on the other side for leptonic/semileptonic studies. Neutrino is reconstructed from missing energy and momentum

BESIII at BEPCII

- Comparable capabilities to CLEO-c, plus muon ID
- The big advantage: BEPCII is a two-ring machine designed for charm
 - Design (achieved) luminosity at ψ (3770): 1 (0.65) x 10³³

5 July 2012

BESIII Data

• World's largest $\psi(3770)$ sample

• Tools/techniques for precision charm physics still under development – all results are PRELIMINARY $-D^+ \rightarrow K^0(\pi^0)e^+v_\mu$ analysis is "partially blind" – 0.92 fb⁻¹ analyzed so far. Full 2.9 fb⁻¹ later for final results

D⁺ Leptonic Decays – Tag Selection

5 July 2012

Ron Poling - ICHEP 2012

D⁺ Leptonic Decays – Signal Selection

- Exactly one track in addition to tag, with the right charge
- Positive muon identification
- No extra photon
- Select on consistency with leptonic decay:

$$M_{\mathrm{miss}}^2 = \left(E_{\mathrm{Beam}} - E_{\mu}\right)^2 - \left(-\vec{p}_{\mathrm{tag}} - \vec{p}_{\mu}\right)^2 \approx 0$$

425 signal candidates: small BG, mom. dist. consistent with $D^+ \rightarrow \mu^+ v$

D⁺ Leptonic Decays – Sample Events

 Positive muon ID requirement reduces background at the expense of slightly reduced efficiency

D⁺ Leptonic Decays – Backgrounds

BESIII Preliminary

Numbers of background events from $D\bar{D}$ decays					
Itumbers of backgro			NMC data		
Source	N_{bkg}^{MC}	Scale factor f	$N_{bkg}^{data} = rac{N_{bkg}}{f} imes rac{\eta^{aata}}{\eta^{MC}}$		
$D^+ ightarrow K^0_L \pi^+$	111	10.8	$7.9\pm0.8\pm0.3$		
$D^+ \to \pi^+ \pi^0$	53	10.8	$3.8\pm0.5\pm0.3$		
$D^+ \to \tau^+ \nu_{\tau}$	96	10.8	$6.9\pm0.7\pm0.3$		
Other D decays	250	10.8	$17.9\pm1.1\pm0.5$		
Sum	510	10.8	$36.4\pm1.6\pm0.7$		
Numbers of background events from $non - D\bar{D}$ decays					
Source	N_{bkg}^{MC}	Scale factor \boldsymbol{f}	$N_{bkg}^{data} = rac{N_{bkg}^{MC}}{f} imes rac{\eta^{data}}{\eta^{MC}}$		
$e^+e^- ightarrow (\gamma)\psi(3686)$	2	6.3	$0.2\pm0.2\pm0.0$		
$e^+e^- ightarrow (\gamma) J/\psi$	0	5.7	$0.0\pm0.0\pm0.0$		
$e^+e^- \rightarrow Light \ Hadron$	33	3.1	$8.2\pm1.4\pm0.3$		
$e^+e^- \to \tau^+\tau^-$	15	6.0	$1.9\pm0.5\pm0.4$		
$\psi(3770) \rightarrow non - D\bar{D}$	7	5.8	$0.9\pm0.4\pm0.9$		
Sum			$11.3\pm1.6\pm1.0$		
Total (D decay and non $-D$ decay)			$47.7 \pm 2.3 \pm 1.3$		

Event type	Number
$N(D^+ \to \mu^+ \nu_\mu)^{\text{candidate}}$	425
$N_{ m b}$	$47.7 \pm 2.3 \pm 1.3$
$N(D^+ \to \mu^+ \nu_\mu)$	$377.3 \pm 20.6 \pm 2.6$

D⁺ Leptonic Decays – Results

$$\frac{\text{BESIII Preliminary}}{N(D^+ \to \mu^+ \nu)} = 377.3 \pm 20.6$$
$$\mathcal{B}(D^+ \to \mu^+ \nu) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$$
$$f_{D^+} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$$

- Consistent with CLEO-c
- Still statistics limited need more data!

D⁺ Leptonic Decays – Comparisons (from G. Rong)

D⁰ Semileptonic Decays – Tag Selection

• Four *D*⁰ tag modes

 $egin{array}{ccc} {\cal K}^-\pi^+ & {\cal K}^-\pi^+\pi^0 \ {\cal K}^-\pi^+\pi^0\pi^0 & {\cal K}^-\pi^+\pi^+\pi^- \end{array}$

Ron Poling - ICHEP 2012

D⁰ Semileptonic Decays – Signal Selection

- Tag plus exactly two oppositely-charged tracks
- Kaon/pion/electron ID
- Electron has right charge
- No extra neutral energy
- Select on consistency with semileptonic decay

$$U = E_{\rm miss} - \left| \vec{P}_{\rm miss} \right| \approx 0$$

• Fit *U* distribution to extract yield

5 July 2012

D⁰ Semileptonic Decays – Branching Fraction

$$B_{sig} = \frac{N_{sig}^{obs}}{\sum_{\alpha} N_{tag}^{obs,\alpha} \epsilon_{tag,sig}^{\alpha} / \epsilon_{tag}^{\alpha}}$$

BESIII Preliminary

Mode	measured branching fraction (%)	PDG	CLEOc
$\bar{D^0} \to K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \to \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$

- Systematic uncertainties are preliminary
- Good consistency with CLEO-c, statistical precision is comparable with only 1/3 data analyzed

D^0 Semileptonic Decays – q^2 Distribution

• Partition D⁺ semileptonic candidates in bins of

 $q^2 = \left(E_v + E_e\right)^2 - \left|\vec{p}_v + \vec{p}_e\right|^2$ with $E_v = E_{\text{miss}}$ $\left|\vec{p}_v\right| = E_{\text{miss}}$

• Fit *U* distribution in each q^2 bin

D^0 Semileptonic Decays – extract $f(q^2)$

- Points are data with statistical errors only
- Curves are Fermilab-MILC (arXiv:1111.5471) with ±1σ (statististical) bands

D⁰ Semileptonic Decays – Form Factor Parameterizations

Simple Pole Model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Modified Pole Model

Becirevic and Kaidalov PLB 478, 417 ('00)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Series Expansion

Becher and Hill

 f_+ PLB 633, 61 ('06)

$$P(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2},t_{0}) \right]^{k}$$

$$z(q^{2},t_{0}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \qquad t_{\pm} = (m_{D} \pm m_{X})^{2}$$

D^0 Semileptonic Decays $-f(q^2)$

*D*⁰ Semileptonic Decays – Form Factor Results

			-
Simple Pole	$f_+(0) V_{cd(s)} $	m_{pole}	
$D^0 \to K e \nu$	$0.729 {\pm} 0.005 {\pm} 0.007$	$1.943{\pm}0.025{\pm}0.003$	
$D^0 o \pi e \nu$	$0.142{\pm}0.003{\pm}0.001$	$1.876{\pm}0.023{\pm}0.004$	
Modified Pole	$f_+(0) V_{cd(s)} $	α	
$D^0 \to K e \nu$	$0.725 {\pm} 0.006 {\pm} 0.007$	$0.265 {\pm} 0.045 {\pm} 0.006$	
$D^0 o \pi e \nu$	$0.140 {\pm} 0.003 {\pm} 0.002$	$0.315{\pm}0.071{\pm}0.012$	
2 par. series	$f_+(0) V_{cd(s)} $	r_1	
$D^0 \to K e \nu$	$0.726 {\pm} 0.006 {\pm} 0.007$	$-2.034{\pm}0.196{\pm}0.022$	
$D^0 o \pi e \nu$	$0.140{\pm}0.004{\pm}0.002$	$-2.117{\pm}0.163{\pm}0.027$	
3 par. series	$f_+(0) V_{cd(s)} $	r_1	r_2
$D^0 \to K e \nu$	$0.729 {\pm} 0.008 {\pm} 0.007$	$-2.179 {\pm} 0.355 {\pm} 0.053$	$4.539 \pm 8.927 \pm 1.103$
$D^0 \to \pi e \nu$	$0.144{\pm}0.005{\pm}0.002$	$-2.728 {\pm} 0.482 {\pm} 0.076$	$4.194{\pm}3.122{\pm}0.448$

 Reasonable consistency with CLEO-c, comparable precision with 2/3 of data still to analyze

Future Charm Prospects at BESIII

- Finalize $D^+ \rightarrow \mu^+ v_{\mu}$ and $D^0 \rightarrow K^-(\pi^+)e^+ v_{\mu}$ on the 2.9 fb⁻¹ ψ (3770) sample
- Extend to $D^+ \rightarrow K^0(\pi^0) e^+ v_\mu$ and other modes
- Highlights of coming data runs:

<u>2012-2013</u> E_{CM} =4260 and 4360 MeV for "XYZ" studies (0.5 fb⁻¹ each)

- <u>2013-2014</u> E_{CM} =4170 MeV for D_s (~2.4 fb⁻¹)
- <u>TBD</u> Additional ψ (3770) data

Summary and Conclusions

- First results from the BESIII experiment have been presented on
 - D⁺ Leptonic Decays

BESIII Preliminary

 $N(D^+
ightarrow \mu^+ v) = 377.3 \pm 20.6$

$$\mathcal{B}(D^+ \to \mu^+ \nu) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$$

 $f_{_{D^+}} = (203.9 \pm 5.7 \pm 2.0) \text{ MeV}$

– D⁰ Semileptonic Decays

• BESIII has arrived for precision charm physics, with more data and more measurements to come

5 July 2012