R value Measurement with BESII and BESII

Haiming HU Guangshun HUANG Zhengguo ZHAO

R&QCD Working Group

BES Collaboration

Aug. 8-12, 2012, Weihai, China

Outline

Significance of R value

R value measurement with **BESII**

R value plan with **BESIII**

Significance of R value

What is R value

Definition:

$$R = \frac{\sigma^0_{had}(e^+e^- \rightarrow \gamma^* \rightarrow \text{hadrons})}{\sigma^0_{\mu\mu}(e^+e^- \rightarrow \gamma^* \rightarrow \mu^+\mu^-)}$$

R value is the inclusive hadronic cross

section in e^+e^- annihilation normalized by Born cross section of $\mu^+\mu^-$. In quark model :

$$R \equiv \frac{\sigma(e^+e^- \rightarrow \text{hadrons})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = \frac{\sum_q \sigma(e^+e^- \rightarrow q\bar{q})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)} = 3\sum_q Q_q^2$$

In pQCD : $R = 3\sum_{f} Q_{f}^{2} [1 + (\frac{\alpha_{s}(s)}{\pi}) + 1.411(\frac{\alpha_{s}(s)}{\pi})^{2} - 12.8(\frac{\alpha_{s}(s)}{\pi})^{3} + ...]$

Why R value important

R – the important input parameter in SM experimental error \rightarrow uncertainty of SM calculation

below 5 GeV use measured value, above 5 GeV use pQCD prediction
Hadronic contribution to

– QED running coupling constant $\alpha_{QED}(M_Z)$

$$\Delta \alpha_{had}^{(5)}(s) = -\frac{\alpha s}{3\pi} \operatorname{Re} \int_{4m_{\pi}^2}^{\infty} ds' \frac{\langle R(s') \rangle}{s' - s - i\varepsilon}$$

- Anomalous magenetic moment of the muon $a_{\mu} = g_{\mu} - 2$ $a_{\mu}^{had} = (\frac{\alpha m_{\mu}}{3\pi})^2 \int_{4m_{\pi}^2}^{\infty} ds' \frac{\hat{K}(s')}{s'^2} R(s')$

- Strong coupling constant α_s determination;
- Global fitting of most probable Higgs mass in SM
- Charm quark mass m_c determination;
- Resonance structure and components in open charm region
- X, Y, Z particles and other possible new resonances

R value measurement with **BESII**

BES, Phys. Rev. Lett. 84, (2000)594
BES, Phys. Rev. Lett. 88, (2002)101802
BES, Phys. Lett. B677, (2009)239

Measurement of R Value with scan data

R value measured with

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

Tasks in experiment:

- *N_{had}* observed hadronic events
- N_{bg} background events
- *L* integrated luminosity
- \mathcal{E}_{had} detection efficiency for N_{had}
- $1+\delta$ radiative correction factor
- $\sigma_{\mu\mu}$ Born cross section of μ pair production in QED.

R measurements with 1998 and 1999 data

- **R** scan data were taken between 2-5 GeV
- **Energy step:** in 3.7–5.0 GeV are 10–20MeV, elsewhere is 100MeV
- ➤Generation simulation: tuned LUARLW and JETSET
- Detector simulation: software based on EGS4
- ➤ Event selection: hadronic events with N_{had} ≥ 2-prong are selected
 ➤ Statistic error: about 2~3 %
- Systematic error: about 5~8 % (event selection and efficiency are dominant)
- **Results:** PRL 84 (2000) 594, PRL 88 (2002) 101802

R measurements with 2004 data

- > Data at 2.60, 3.07 and 3.65 GeV were taken
- Statistical error: small, about 0.5%
- Generation simulation: LUARLW is retuned with improved way
- Detector simulation: is updated by GEANT3 based software
- **Event selection:** improved, $N_{had} \ge 1$ -prong events are selected
- Systematical error: about 3.5%

Measured values:

$E_{\rm cm}$ (GeV)	L (pb ⁻¹)) N ^{obs} had	$N_{\rm bg}$	$\epsilon_{\rm trg}$ (%)	$\epsilon_{ m had}^0$ (%)	$(1 + \delta_{obs})$	R	$\sigma_{ m sta}$	$\sigma_{ m sys}$
2.60	1.222	24026	193	99.80	63.81	1.08	2.18	0.02	0.08
3.07	2.291	33933	208	99.80	67.63	1.11	2.13	0.02	0.07
3.65	6.485	83767	4937	99.80	71.83	1.21	2.14	0.01	0.07

Error terms (%):

E _{cm} (GeV)	L	$N_{\rm had}$	$N_{\rm bg}$	$\Delta \epsilon_{\mathrm{trk}}$	$\epsilon_{ m trg}$	$(1 + \delta_{obs})$	Total
2.60	2.00	2.79	0.05	0.32	0.50	1.18	3.68
3.07	1.96	2.53	0.05	0.29	0.50	1.15	3.45
3.65	1.38	2.74	0.35	0.26	0.50	1.10	3.33

Overview of R value measured with BESII

Determination of α_s with R

Phys. Lett.B677, 239(2009)

Determination of α_s with R value

	E_{cm} (GeV)	R	$\alpha_s^{(3)}(s)$	$\alpha_s^{(4)}$ (25 GeV ²)	$\alpha_s^{(5)}(M_Z^2)$		
	2.60	2.18	$0.266^{+0.030+0.125}_{-0.030-0.126}$				
	3.07	2.13	$0.192_{-0.029-0.101}^{+0.029+0.103}$	$0.209^{+0.044}_{-0.050}$	$0.117_{-0.017}^{+0.012}$		
	3.65	2.14	$0.207^{+0.015+0.104}_{-0.015-0.104}$				
$\frac{\delta R}{R}$:	sys $\sim 3.5\%$;	stat \sim 0.5 $-$ 1% $$!				
• p	erfect agreer	nent v	vith pQCD				
• p	erfect agreer	nent v	vith		•		
•_	$\sim \alpha_{s}$ from Z decay rate: $\alpha_{s}^{(5)}(M_{Z}^{2}) = 0.1185 \pm 0.0026$						
_	- τ -decays (E	Baikov	, Chetyrkin, JK)				
$\alpha_s^{(3)}(m_\tau^2) = 0.332 \pm 0.005_{exp} \pm 0.015_{th} \Rightarrow \alpha_s^{(5)}(M_Z^2) = 0.120 \pm 0.019$							
$ullet$ relative importance of $lpha_s^4$ -terms for BES e.g. at 2.606 GeV:							
$0.266 \pm 0.030 \pm 0.120 \implies 0.286 \pm \dots$							
	(a, b, c, c, c, c, c, c) of encoded interact						

low energies (\sim 2 GeV) of special interest validity of pQCD? \Rightarrow s-dependence!

Parameters of heavy charmonium

Phys. Lett. B660, 315(2008)

Resonant structure

BESII results quoted by PDG

3770

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

ψ(3770) MASS

 $\psi(4160)$

 $I^{G}(J^{PC}) = 0^{-}(1^{-})$

ψ(4160) MASS

Form factor of 4π

Chiral Dynamics 2006, World Scientific Nucl. Phys. (Proc. Suppl.)B162, 5(2006)

Theoretical model

The most successful theory for $e^+e^- \rightarrow 2(\pi^+\pi^-)$ is the extend vector meson dominant model, which predicts : N.N.Achasov and A.A.Kozhevnikov, Phys. Rev. D 55, 2663(1997) Born cross section:

$$\sigma(e^+e^- \to 2\pi^+2\pi^-) = \frac{(4\pi\alpha)^2}{s^{3/2}} |F_{\rho^0\pi^+\pi^-}(s)|^2 W_{\pi^+\pi^-\pi^+\pi^-}(s)$$
$$F_{\rho^0\pi^+\pi^-}(s) = \left(\frac{m_{\rho}^2}{f_{\rho}}, \frac{m_{\rho'_1}^2}{f_{\rho'_1}}, \frac{m_{\rho'_2}^2}{f_{\rho'_2}}\right) G^{-1}(s) \begin{pmatrix} 2g_{\rho\pi\pi}^2\\g_{\rho'_1\rho^0\pi\pi}\\g_{\rho'_1\rho^0\pi\pi} \end{pmatrix}$$

Final state factor :

Form factor:

$$W_{\pi^{+}\pi^{-}\pi^{+}\pi^{-}}(s) = \frac{1}{(2\pi)^{3}4s} \int_{(2m\pi)^{2}}^{(\sqrt{s}-2m\pi)^{2}} dm_{1}^{2} \rho_{\pi\pi}(m_{1}) \int_{(2m\pi)^{2}}^{(\sqrt{s}-m_{1})^{2}} \frac{dm_{2}^{2}}{2m_{2}}$$
$$\times (1 + \frac{q^{2}(\sqrt{s},m_{1},m_{2})}{3m_{1}^{2}})q(\sqrt{s},m_{1},m_{2})q(m_{2},m_{\pi},m_{\pi})$$

$$G(s) = \begin{pmatrix} D_{\rho} & -\Pi_{\rho\rho'_{1}} & -\Pi_{\rho\rho'_{2}} \\ -\Pi_{\rho\rho'_{1}} & D_{\rho'_{1}} & -\Pi_{\rho'_{1}\rho'_{2}} \\ -\Pi_{\rho\rho'_{2}} & -\Pi_{\rho'_{1}\rho'_{2}} & D_{\rho'_{2}} \end{pmatrix}$$

$$ho_{\pi\pi}(m) = rac{rac{1}{\pi}m\Gamma_{
ho}(m)}{(m^2-m_{
ho}^2)^2+[m\Gamma_{
ho}(m)]^2}$$

 $\setminus g_{
ho_{9}
ho^{0}\pi\pi}$ /

 $2(\pi^+\pi^-)$ cross section

The measured cross sections by BaBar and BES agree well

Comparison between data and model

The measured cross sections and form factors by CMD2, DM1 and BES and the corresponding fitted curve with the VMD

 $e^+ e^- \rightarrow p \bar{p}$

Phys. Lett. B630, 14 (2005)

Cross section

Form factor fitting

pQCD predicts $p\bar{p}$ form factor ~ $[\alpha_s(s)]^2$, one often uses $|G| = \frac{C}{s^2 \ln^2(s/\Lambda^2)} \Lambda = 0.3 \text{ GeV}$ is the QCD scale parameter C is the free parameter

BESII's results improved SM calculations

Contribution to $\Delta \alpha(M_Z)$

Before **BESII** measurement

After **BESII** measurement

	S. Eidelman (1995)	H.Burkhardt & B.Pietrzyk (2001)		
BES's R	no used	used		
$\Delta lpha_{had}^{(5)}(M_Z^2)$	0.0280 ± 0.0007	0.0276 ± 0.00036		
$\alpha^{-1}(\mathrm{M}_{\mathrm{Z}}^2)$	128.90 ± 0.09	128.936 ± 0.0046		

Contribution to (g-2) of μ

Progresses of g-2 measurement

实验时间	实验室	物理学家	粒子	实验结果	实验精度
1957	Nevis	L. Lederman 等	μ+	0.00 ± 0.10	
1959	Nevis	L. Lederman 等	μ+	0.00113(14)	12.4%
1961	CERN	G. Charpak 等	μ+	0.001145(22)	1.9%
1962	CERN	G. Charpak 等	μ+	0.001162(5)	0.43%
1968	CERN	J. Bailey 等	μ±	0.00116616(31)	265ppm
1975	CERN	J. Bailey 等	μ±	0.001165895(27)	23ppm
1979	CERN	J. Bailey 等	μ±	0.001165911(11)	7.3ppm
2000	Brookhaven	H. N. Brown 等	μ+	0.0011659191(59)	5ppm
2001	Brookhaven	H. N. Brown 等	μ+	0.0011659202(14)(6)	1.3ppm
2002	Brookhaven	G. W. Bennett 等	μ+	0.0011659203(8)	0.7ppm
2004	Brookhaven	G. W. Bennett 等	h.	0.0011659214(8)(3)	0.7ppm
2004	Brookhaven	G. W. Bennett 等	μ±	0.00116592080(63)	0.54ppm

Comparison between experiments and SM

Summing all contribution terms in SM, one may see the difference between the prediction of SM and E821 experimentsE821:

E821 – Final Report: PRD73 (2006) 072 with latest value of $\lambda = \mu_{\mu}/\mu_{p}$ (Codata '06)

$a_{\mu}^{\rm SM} \times 10^{11}$	$(\Delta a_{\mu} = a_{\mu}^{\text{EXP}} - a_{\mu}^{\text{SM}}) \times 10^{11}$	σ
[1] 116 591 773 (53)	316 (82)	3.8
[2] 116 591 782 (59)	307 (86)	3.6
[3] 116 591 834 (49)	255 (80)	3.2
[4] 116591773(48)	316 (79)	4.0
[5] 116 591 929 (52)	160 (82)	2.0

[1] HMNT06, PLB649 (2007) 173.

with $a_{\mu}^{HHO}(lbl) = 105 (26) \times 10^{-11}$

27

[2] F. Jegerlehner and A. Nyffeler, arXiv:0902.3360.

[3] Davier et al, arXiv:0908.4300 August 2009 (includes BaBar)

[4] Hagiwara, Liao, Martin, Nomura, Teubner, Oct '09 (preliminary)

[5] Davier et al, arXiv:0906.5443v2 August 2009 (τ data).

Status: considering error, experimental values and SM predictions are inconsistence significantly.

Reasons: whether calculations of QED, EW and QCD are correct? Or new physics? Or g-2 measurement error?

Solutions: before definite conclusion, need more precision measurements and theoretical calculations.

Contribution to global fit of Higgs mass

Without **BESII** data

With **BESII** data

The most probable fit of Higgs mass

SM predicts the global fitting in the two dimension $(\Delta\alpha^{(5)}_{had}(M_Z^2), M_H)$

The update values of SM calculations and experiments search limit the possible Higgs mass into a very small region

29

Standard fitting with ZFITTER

$\chi^2/{\rm DoF}$ (prob.)	$25.4/15 \ (\chi^2 \text{ prob.} = 4.5 \%)$			
$m_{\rm Z}$ [GeV]	91.1875 ± 0.0021			
m_t [GeV]	174.3 ± 4.5			
$\Delta \alpha_{had}^{(5)}$	0.02767 ± 0.00035			
α_s	0.1186 ± 0.0027			
$m_{\rm H}$ [GeV]	96^{+60}_{-38}			
	derived parameters			
$\sin^2 \theta_W^{eff}$	0.23143 ± 0.00014			
$\sin^2 \theta_W$	0.22289 ± 0.00036			
$m_{ m W}$	80.385 ± 0.019			
largest correlations: $m_{\rm H} - m_{\rm t}$: 71 % $m_{\rm H} - \Delta \alpha_{\rm had}^{(5)}$: 48 %				

Table 2. Fit to all data with ZFITTER

When inspect the stability of the most probable Higgs mass in SM global fitting, when the error of $\Delta \alpha_{had}^{(5)}$ change one standard error, the corresponding error of Higgs mass change 48%.

SM prediction for Higgs mass

- The dependence of SM predictions on the Higgs mass, via loops, provides a powerful tool to set bounds on its value.
- Comparing the theoretical predictions of M_W and $\sin^2 \theta_{eff}^{lept}$ [convenient formulae in terms of M_H , M_{top} , $\Delta \alpha_{hod}^{(0)}(M_Z)$ and $\alpha_s(M_Z)$ by Degrassi, Gambino, MP, Sirlin '98; Degrassi, Gambino '00; Ferroglia, Ossola, MP, Sirlin '02; Awramik, Czakon, Freitas, Weiglein '04 & '06]
 - with $M_w = 80.399 (23) \, GeV$ [LEP+Tevatron, Aug' 09] $\sin^2 \theta_{eff}^{lept} = 0.23153 (16)$ [LEP+SLC]

and

 $\Delta \alpha_{had}^{(5)}(M_Z) = 0.02760 (15) [HLMNT Oct '09 Prelim]$ $M_{top} = 173.1 (1.3) GeV [CDF-D0, Mar '09]$ $\alpha_s(M_Z) = 0.118 (2) [PDG '08]$

we get

The value of Δα_{had}⁽⁵⁾(M_Z) is a key input of these EW fits...

Search for Higgs in experiments

The present conclusion:

If Higgs predicted by SM exists, its mass 115.5 GeV < MH < 127 GeV (at 95% CL)

- **CMS:** $H \rightarrow ZZ \rightarrow llqq$, llll, llvv, lltt, $H \rightarrow WW$, $H \rightarrow \tau\tau$, $H \rightarrow bb$, $H \rightarrow \gamma\gamma$ MH < 127 GeV
- ATLAS: $H \rightarrow ZZ \rightarrow IIII, H \rightarrow WW, H \rightarrow \gamma\gamma$ MH > 115.5 GeV & MH < 131 GeV

Tevatron (CDF,DØ): $H \rightarrow ZZ,WW, \gamma\gamma, \tau\tau,bb$

Мн > 120 GeV, Мн < 150 GeV, Мн > 175 GeV

Search for Higgs in experiments

Higgs search vs MS global fitting

R value contribution to error of a_{μ} and $\Delta \alpha$

Before BESII R scan

$a_{\rm s}$ measurement with R value

- R value measured with BESII improved some SM calculations
- But SM calculations are needed to further improved
- More accurate R value measurements are appealed
- What next to do?
- New plans are coming.....

Data taking (plan) with BESIII

R Scan Strategies with **BESIII**

• **Phase I**: pre-study, ~7 days

@ 2.2, 2.4, 2.8 and 3.4 GeV, MC tuning, ...

- Phase II: scan continuum region, ~10 days for R, or ~100 day for FF
 @ 15 points in 2.0–3.6 GeV, step 100 MeV, 100k+ hadrons<3 GeV.
- Phase III: scan resonance region, ~10 days, or 2 months
 ~100 points in 3.8–4.6 GeV, 10k or 100k, step 1, 2, 5, 10, 20 MeV.
 (10⁸ hadrons at 4040, 4160, 4415 for radiative decay search?)

39

Full plan for R scan below charm

Ecm(GeV)	Nhad	Lum. (1/nb)	BESII rate(1/hr)	Time (hr)	Tuning (hr)
2.0	10000	417.0	8.66	23.1	12
2.1	10000	419.2	-	20.0	12
2.2	10000	420.8	16.7	12.0	12
2.3	10000	443.7	-	12.0	12
2.4	50000	2332.9	29.5	33.9	12
2.4		Separated bea	m	8.0	0
2.5	10000	489.5	18.9	10.6	12
2.6	10000	513.7	42.3	4.7	8
2.7	10000	554.2	33.9	5.9	8
2.8	50000	3068.0	35.8	27.9	8
2.9	10000	630.6	51.3	3.9	8
3.3	10000	717.7	-	4.2	4
3.4	20000	1493.5	47.7	8.4	4
3.4		Separeted bea	m	4.0	0
3.5	10000	775.9	-	4.2	4
Sum		1	2.5 days \leftarrow	182.8	+ 116

R scan with **BESII** in 1999

• Energy steps seem too large to figure out the fine charm resonant structures

• Error of R value are large for precision SM calculations

Coming R scan with BESIII

- Energy steps: 1~2MeV;
- Large enough samples for measuring R value and resonant parameters.

The taken data for R below charm

June 7-15, 2012

Ebeam (GeV)	Ecm (GeV)	Nhad (offline)	Lum. actual (plan) (1/pb)	T _{estimated} (hour)	T _{actual} (T _{pure}) (hour)
1.7	3.4	20000	1.6583 (1.4935)	8.4+4	10 (4.8)
1.7	3.4	Separated beam		4	5.3 (4.0)
1.4	2.8	50000	3.0993 (3.0680)	28+8	37 (17.5)
1.2	2.4	50000	2.3409 (2.3329)	34+12	94 (35.4)
1.2	2.4	Separated beam		4	6.5 (4.1)
1.1162	2.2324	35000	1.4657 (1.5000)	42+12	45.6 (27.9)

- Data quality check and analysis
 MC LUARLW tuning
- Statistic error < 1% Systematic error ?

 J/ψ scan (5.25–6.07)

No.	E _{beam}	E _{cm}	luminosity
	(MeV)	(MeV)	(pb^{-1})
1	1525.00	3050.0	14.0
2	1530.00	3060.0	14.0
3	1541.50	3083.0	2.50
4	1545.00	3090.0	14.0
5	1546.50	3093.0	14.0
Extra point	1546.90	3093.8	0.5
6	1547.25	3094.5	2.50
7	1547.60	3095.2	2.25
8	1547.90	3095.8	2.00
9	1548.45	3096.9	2.00
10	1549.10	3098.2	2.00
11	1549.50	3099.0	2.00
12	1550.75	3101.5	2.00
13	1552.75	3105.5	2.25
14	1556.00	3112.0	2.25
15	1560.00	3120.0	2.00

BEPCII Energy spread @J/ Ψ : ~ 0.83MeV

LUARLW tuning

Lund area law generator

Improvement of LUARLW

Up to now, LUARLU can simulate ISR inclusive continuous channels and $J^{PC} = 1^{--}$ resonances from hadronic threshold to 5 GeV. But parameters have been waiting for data to tune.

Charmonia decay modes

The productions and decays of the charmonia are simulated based on their Feynman figures, discovered or possible channels.

Branch ratio are phenomenological parameters and have to be set by data in MC tuning.

Comparisons between data and LUARLW

LUARLW tuning with BESIII data

Projects related to R scan data

- \mathbb{R} value (scan and ISR return): precision ~2.5%
- \bowtie QCD running coupling constant $\alpha_s(s)$
- Charm quark mass m_q : precision ~30%
- charmonium parameters: fine scan, find new states
- form factors: proton $|G_M|$ and $|G_E|$, and other mesons and baryons FF
- multiplicity: $P_n(s)$, $\langle n \rangle$, $R_2(s)$, F-B correlation $\langle n_f \rangle = c_0 + c_1 \langle n_b \rangle$
- fragmentation function: $D_q^h(z)$ $z = 2E_h / \sqrt{s}$
- inclusive distributions: x, y, η , ξ , p_t , $\cos\theta$, C_s , C_L
- topological properties : sphericity S and thrust T
- Bose-Einstein correlation: $C_2(Q^2) \rightarrow$ hadronic space-time structure $f_c(x)$ fractal properties of final state phase sace: $F^V(\delta y) \neq F_q \propto (Q^{-\phi})$