A Review of χ_{cJ}(1P) Decays at BESIII and CLEO-c

Ryan Mitchell Indiana University Charm 2012 May 14, 2012

The $\chi_{cJ}(1P)$ States of Charmonium

S = 1 (spins aligned) and 2S $\rightarrow \gamma \chi_{c}$ L = 1 (P-wave)

 $\Rightarrow \mathbf{J} = 0, 1, 2 \left(\chi_{c0}(1P), \chi_{c1}(1P), \chi_{c2}(1P) \right)$

Produced through $\psi(2S) \rightarrow \gamma \chi_{cJ}(1P)$ with rates of ~10% for each J:

CLEO-c number of $\psi(2S)$: 26M BESIII number of $\psi(2S)$: 106M

Importance of the $\chi_{cJ}(1P)$ States

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

• Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

g

 \overline{C}

2-body decay widths?

ELECTROMAGNETIC

Zeroth order is QED. qС But the process is sensitive to QCD corrections.

Some theoretical uncertainties cancel in the ratio: Q

$$\begin{array}{cc} c \\ R = \frac{\Gamma(\chi_{c2} \to \gamma \overline{q})}{\Gamma(\chi_{c0} \to \gamma \gamma)} \begin{array}{c} g \\ c \end{array} \\ \overline{c} \end{array}$$

С

Also measure ratio of two helicity amplitudes for $\chi_{c2} \rightarrow \gamma \gamma$.

ELECTROMAGNETIC

Zeroth order is QED. g cBut the process is sensitive to QCD corrections. c

Some theoretical uncertainties cancel in the ratio: q

$$egin{aligned} C & R = rac{\Gamma(\chi_{c2} o \gamma \overline{q})}{\Gamma(\chi_{c0} o \gamma \gamma)} egin{aligned} g & \overline{c} & \overline{c} \ \overline{c} & Q & \overline{c} \end{aligned}$$

С

Also measure ratio of two helicity amplitudes for $\chi_{c2} \rightarrow \gamma \gamma$.

2-body decay widths?

ELECTROMAGNETIC

Zeroth order is QED. g

But the process is sensitive to QCD corrections.

Some theoretical uncertainties cancel in the ratio: q

$$\begin{array}{c} C \\ R = \frac{\Gamma(\chi_{c2} \to \gamma \overline{q})}{\Gamma(\chi_{c0} \to \gamma \gamma)} \begin{array}{c} g \\ \overline{c} \\ \end{array}$$

Also measure ratio of two helicity amplitudes for $\chi_{c2} \rightarrow \gamma \gamma$.

To lowest order (QED): $\mathbf{R} = 4/15 \approx 0.27$

Wgth corrections, predictions vary from: $q^{\mathbf{R}} = 0.09 - 0.36$

 $\Rightarrow R$ is sensitive to higher order QCD effects (radiative corrections, relativistic corrections, etc)

Study of $\chi_{c0,2}^{(\gamma_1)} \xrightarrow{(GeV)} \gamma \gamma$ at BESIII (preliminary)

Quantity	χ_{c0}	χ_{c2}		Results for R are consistent with
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^5$	$2.17 \pm 0.17 \pm 0.12$	$2.81 {\pm} 0.17 {\pm} 0.15$	/	the lowest order prediction!
$\mathcal{B}_2 imes 10^4$	$2.24 \pm 0.19 \pm 0.12 \pm 0.08$	$3.21 \pm 0.18 \pm 0.17 \pm 0.13$		(but many calculations of higher
$\Gamma_{\gamma\gamma}$ (keV)	$2.33 \pm 0.20 \pm 0.13 \pm 0.17$	$0.63 \pm 0.04 \pm 0.04 \pm 0.04$		order corrections deviate from
${\cal R}$	0.271 ± 0.029 =	$\pm 0.013 \pm 0.027$		this value 22
				<i>inis vaiue</i>

Also look at the two possible helicity states $(\lambda_2 = 0, 2)_2 \circ f_0 the_0 photons in \chi_{c2.8} \rightarrow 0.6 \gamma_0 4$: -0.2 -0.0 0.2 0.4 0.6 0.8 1.0

Events / 0.08 ¹⁵Fit angular^{FitMC} stributions with fixed₅₀ χ_{c2} helicity ratios ($x = A_1/A_0$ and $y = A_2/A_0$) and one free ¹⁰parameter ($f_{0/2}$, the fraction of $\lambda_{\underline{k}} = 0 / \lambda = 2$):

$$\int_{0}^{50} \frac{W_2(\theta_1, \theta_2, \phi_2)}{\cos \theta_2} = \int_{0.2}^{0} \int_{0}^{0} \int_{0.2}^{0} \int_{0}^{0} \int_{0.2}^{0} \int_{0}^{0} \int_{0.2}^{0} \int_{0}^{0} \int_{0}$$

$$\begin{bmatrix} 200 \\ \#it M \\ 50 \\ 50 \\ 50 \\ \end{bmatrix} \begin{bmatrix} \frac{data}{4} \\ \frac{1}{4}y^2(1 + \cos^2\theta_1)(1 + 6\cos^2\theta_2 + \cos^4\theta_2) + 2x^2\sin^2\theta_1(1 + \cos^2\theta_2)\sin^2\theta_2 + \frac{\sqrt{2}}{4}xy\sin 2\theta_1\sin 2\theta_2(3 + \cos^2\theta_2)\cos\phi_2 \\ - \frac{\sqrt{3}}{2}x\sin 2\theta_1\sin^2\theta_2\sin 2\theta_2\cos\phi_2 + \frac{\sqrt{6}}{2}y\sin^2\theta_1(1 - \cos^4\theta_2)\cos 2\phi_2 + \frac{3}{2}(1 + \cos^2\theta_1)\sin^4\theta_2 \end{bmatrix}, \quad (5)$$

$$-\frac{\sqrt{3}}{2}x\sin 2\theta_1\sin^2\theta_2\sin 2\theta_2\cos\phi_2 + \frac{\sqrt{6}}{2}y\sin^2\theta_1(1-\cos^4\theta_2)\cos 2\phi_2 + \frac{3}{2}(1+\cos^2\theta_1)\sin^4\theta_2\bigg]_{\lambda=2},$$
(5)

Find $f_{0/2} = 0.00 \pm 0.02$ (consistent with expectations, < 0.5%) \Rightarrow dominantly $\lambda = 2$.

6

100

50

00

2

ELECTROMAGNETIC

Zeroth order is QED. g cBut the process is sensitive to QCD corrections. c

Theoretical uncertainties cancel in the ratio: q c

$$egin{aligned} & C & \ & R = rac{\Gamma(\chi_{c2} o \gamma \overline{m{q}})}{\Gamma(\chi_{c0} o \gamma \gamma)} egin{aligned} & g & \ & \overline{c} & \ & \overline{c} & \ & \hline \end{array}$$

Also measure ratio of two helicity amplitudes for $\chi_{c2} \rightarrow \gamma \gamma$.

Study of $\chi_{cJ} \rightarrow \omega \omega, \phi \phi, \omega \phi$ at BESIII (*PRL 107, 092001 (2011*))

Three initial expectations:

- 1. Perturbative QCD calculations suggest branching fractions much smaller than 10^{-3} .
- 2. $\chi_{c1} \rightarrow VV (\omega \omega, \varphi \varphi)$ should be suppressed due to the "helicity selection rule": $\chi_{c0,2} \to gg$ **00000** 9 q \overline{q} **00000** g 3. $\chi_{cJ} \rightarrow V'V(\omega \phi)$ should be suppressed since it is doubly OZI-violating: qg \boldsymbol{Q} double OZI single OZI \overline{q} 0000 DOOD, \overline{q}

Study of $\chi_{cJ} \rightarrow \omega \omega, \phi \phi, \omega \phi$ at BESIII (*PRL 107, 092001 (2011*))

Fit signals while accounting for (small) peaking backgrounds from sidebands.

Find:

Branching fractions of O(10⁻³)
 (against perturbative QCD expectations).

2. Substantial rates for $\chi_{c1} \rightarrow VV$ (*against helicity expectations?*).

3. Substantial rates for $\chi_{cJ} \rightarrow V'V(\omega\phi)$ (*against double OZI expectations?*).

Study of $\chi_{cJ} \rightarrow \omega \omega, \phi \phi, \omega \phi$ at BESIII (*PRL 107, 092001 (2011*))

Mode	N _{net}	ϵ (%)	$\mathcal{B}(imes 10^{-4})$					
$\chi_{c0} \rightarrow \phi \phi$	433 ± 23	22.4	$7.8 \pm 0.4 \pm 0.8$					
$\chi_{c1} \rightarrow \phi \phi$	254 ± 17	26.4	$4.1 \pm 0.3 \pm 0.4$					
$\chi_{c2} \rightarrow \phi \phi$	630 ± 26	26.1	$10.7 \pm 0.4 \pm 1.1$					
$\rightarrow 2(K^+K^-)$								
$\chi_{c0} \rightarrow \phi \phi$	179 ± 16	12.8	$9.2 \pm 0.7 \pm 1.0$					
$\chi_{c1} \rightarrow \phi \phi$	112 ± 12	15.3	$5.0 \pm 0.5 \pm 0.6$					
$\chi_{c2} \rightarrow \phi \phi$	219 ± 16	14.9	$10.7 \pm 0.7 \pm 1.2$					
$\rightarrow K^+ K^- \pi^+ \pi^- \pi^0$								
Combined:								
$\chi_{c0} \rightarrow \phi \phi$	• • •	• • •	$8.0 \pm 0.3 \pm 0.8$					
$\chi_{c1} \rightarrow \phi \phi$	• • •	• • •	$4.4 \pm 0.3 \pm 0.5$					
$\chi_{c2} \rightarrow \phi \phi$	• • •	• • •	$10.7 \pm 0.3 \pm 1.2$					
$\chi_{c0} \rightarrow \omega \omega$	991 ± 38	13.1	$9.5 \pm 0.3 \pm 1.1$					
$\chi_{c1} \rightarrow \omega \omega$	597 ± 29	13.2	$6.0 \pm 0.3 \pm 0.7$					
$\chi_{c2} \rightarrow \omega \omega$	762 ± 31	11.9	$8.9 \pm 0.3 \pm 1.1$					
$\rightarrow 2(\pi^+\pi^-\pi^0)$								
$\chi_{c0} \rightarrow \omega \phi$	76 ± 11	14.7	$1.2 \pm 0.1 \pm 0.2$					
$\chi_{c1} \rightarrow \omega \phi$	15 ± 4	16.2	$0.22 \pm 0.06 \pm 0.02$					
$\chi_{c2} \rightarrow \omega \phi$	<13	15.7	< 0.2					
$\rightarrow K^+ K^- \pi^+ \pi^- \pi^0$								

Final numbers:

Find:

Branching fractions of O(10⁻³)
 (against perturbative QCD expectations).

2. Substantial rates for $\chi_{c1} \rightarrow VV$ (*against helicity expectations?*).

3. Substantial rates for $\chi_{cJ} \rightarrow V'V(\omega\phi)$ (*against double OZI expectations?*).

ELECTROMAGNETIC

Zeroth order is QED. g cBut the process is sensitive to QCD corrections. C

Theoretical uncertainties cancel in the ratio: q c

$$egin{aligned} C & R = rac{\Gamma(\chi_{c2} o \gamma \overline{m{q}})}{\Gamma(\chi_{c0} o \gamma \gamma)} egin{aligned} g & R & \overline{m{c}} & \overline{$$

Also measure ratio of two helicity amplitudes for $\chi_{c2} \rightarrow \gamma \gamma$.

2-body decay widths?

The "Color Octet Model" and χ_{cJ} di-Baryon Decays

Using only the color singlet model:

$$\mathcal{B}(\chi_{c0} \to p\overline{p}) = 0.29 \times 10^{-5}$$
$$\mathcal{B}(\chi_{c2} \to p\overline{p}) = 0.84 \times 10^{-5}$$

which are far lower than the experimental values.

	Bra	nching F	ractions of χ_{c1}	Br	anching	Fractions of χ_{c2}
Decay Mode	COM	PDG	NEW from BESIII	COM	PDG	NEW from BESIII
$p\overline{p}$	6.5	7.3 ± 0.4	_	7.8	7.2 ± 0.4	_
$n\overline{n}$	6.5	_	_	7.8	_	_
$\Lambda\overline{\Lambda}$	3.9	$ 11.8 \pm 1.9 $	$12.2 \pm 1.1 \pm 1.1$	3.5	$ 18.6 \pm 2.7 $	$20.8 \pm 1.6 \pm 2.2$
$\Sigma^0 \overline{\Sigma}^0$	3.3	< 4	$3.8\pm1.0\pm0.5$	5.0	< 8	$4.0\pm1.1\pm0.4$
$\Sigma^+\overline{\Sigma}^-$	3.3	< 6	$5.4\pm1.5\pm0.4$	5.0	< 7	$4.9\pm1.9\pm0.6$
$\Xi^0\overline{\Xi}^0$	2.5	< 6	_	3.7	< 11	_
$\Xi^-\overline{\Xi}^+$	2.5	8.4 ± 2.3	—	3.7	15.5 ± 3.5	_
$\Delta\overline{\Delta}$	3.9	_	—	6.3	_	_
$\Sigma^{+*}(1385)\overline{\Sigma}^{-*}(1385)$	2.1	_	$4.6 \pm 2.7 \pm 1.0 \ (< 9.3)$	3.6	_	$8.1 \pm 4.4 \pm 1.8 \ (< 16)$
$\Sigma^{-*}(1385)\overline{\Sigma}^{+*}(1385)$	2.1	_	$1.7 \pm 2.0 \pm 0.3 \ (< 5.4)$	3.6	_	$0.1 \pm 3.7 \pm 0.3 \ (< 7.2)$
[1] * [*]]	1.1	_	_	2.1	_	_
$\Lambda(1520)\overline{\Lambda}(1520)$	_	_	< 8.6	_	_	51 ± 13

Use color octet contributions to correct the discrepancy and predict other di-baryon rates:

(Note that χ_{c0} decays are suppressed by the "helicity selection rule.")

pre

The "Color Octet Model" and χ_{cJ} di-Baryon Decays

Using only the color singlet model:

$$\mathcal{B}(\chi_{c0} \to p\overline{p}) = 0.29 \times 10^{-5}$$
$$\mathcal{B}(\chi_{c2} \to p\overline{p}) = 0.84 \times 10^{-5}$$

which are far lower than the experimental values.

Branching Fractions of χ_{c1} **Branching Fractions of** χ_{c2} (in units predictions (COM) from EPJ. C 14, 643 (2000) PDG Decay Mode NEW from BESIII PDG NEW from BESIII of 10⁻⁵) COM COM 6.5 7.3 ± 0.4 7.8 7.2 ± 0.4 $p\overline{p}$ 7.86.5 $n\overline{n}$ $\Lambda\overline{\Lambda}$ 18.6 ± 2.7 3.9 11.8 ± 1.9 $12.2 \pm 1.1 \pm 1.1$ 3.5 $20.8 \pm 1.6 \pm 2.2$ $\Sigma^0 \overline{\Sigma}^0$ < 4 $3.8\pm1.0\pm0.5$ $4.0\pm1.1\pm0.4$ < 8 3.3 5.0 $\Sigma^+\overline{\Sigma}^ 5.4\pm1.5\pm0.4$ $4.9\pm1.9\pm0.6$ 3.3 < 6 < 75.0 $\Xi^0\overline{\Xi}^0$ < 6 2.53.7 < 11 $\Xi^-\overline{\Xi}^+$ 15.5 ± 3.5 2.5 8.4 ± 2.3 3.7 $\Delta \overline{\Delta}$ 6.3 3.9 $\Sigma^{+*}(1385)\overline{\Sigma}^{-*}(1385)$ $4.6 \pm 2.7 \pm 1.0 \ (< 9.3)$ $8.1 \pm 4.4 \pm 1.8 \ (< 16)$ 2.13.6 ___ ____ $\Sigma^{-*}(1385)\overline{\Sigma}^{+*}(1385)$ $1.7 \pm 2.0 \pm 0.3 \ (< 5.4)$ $0.1 \pm 3.7 \pm 0.3 \ (< 7.2)$ 2.13.6 ____ — $\Xi^*\overline{\Xi}^*$ 1.12.1 $\Lambda(1520)\overline{\Lambda}(1520)$ < 8.6 51 ± 13

Use color octet contributions to correct the discrepancy and predict other di-baryon rates:

(Note that χ_{c0} decays are suppressed by the "helicity selection rule.")

15

1. χ_{cJ} di-Baryon Decays at BESIII (preliminary)

Select clean samples of χ_{cJ} decays using:

$$\Lambda \to p\pi^{-} \quad \Sigma^{0} \to \gamma\Lambda \quad \Sigma^{+} \to p\pi^{0}$$

$$\overline{\Lambda} \to \overline{p}\pi^{+} \quad \overline{\Sigma}^{0} \to \gamma\overline{\Lambda} \quad \overline{\Sigma}^{-} \to \overline{p}\pi^{0}$$

]	(in units of 10 ⁻⁵)		
Mode		χ_{c0}	χ_{c1}	χ_{c2}
	This work	33.3±2.0±2.6	12.2±1.1±1.1	20.8±1.6±2.2
	PDG	33.0±4.0	11.8±1.9	$18.6{\pm}2.7$
$\Lambda ar{\Lambda}$	CLEO [18]	$33.8 \pm 3.6 \pm 2.2 \pm 1.7$	$11.6 \pm 1.8 \pm 0.7 \pm 0.7$	$17.0 \pm 2.2 \pm 1.1 \pm 1.1$
	Theory [4, 19]	11.9~15.1	3.9	3.5
	This work	47.8±3.4±3.8	3.8±1.0±0.5 (< 6.1)	4.0±1.1±0.4 (< 6.4)
	PDG	42.0±7.0	<4.0	<8.0
$\Sigma^0 \bar{\Sigma}^0$	CLEO [18]	44.1±5.6±4.2±2.2	<4.4	<7.5 C.L.
	Theory [4]	_	3.3	5.0
	This work	45.4±4.2±2.5	5.4±1.5±0.4 (< 8.5)	4.9±1.9±0.6 (<8.6)
	PDG	31.0±7.0	<6.0	<7.0
$\Sigma^+ \bar{\Sigma}^-$	CLEO [18]	32.5±5.7±4.0±1.7	<6.5	<6.7
	Theory [4]	_	3.3	5.0

 $\mathcal{B}(\chi_{c1,2} \to \Lambda \overline{\Lambda})$: still larger than COM predictions $\mathcal{B}(\chi_{c1,2} \to \Sigma \overline{\Sigma})$: UL's agree with COM predictions

$\mathcal{B}(\chi_{c0} \to \Lambda \overline{\Lambda}, \Sigma \overline{\Sigma})$: large violation of the helicity selection rule

The "Color Octet Model" and χ_{cJ} di-Baryon Decays

Using only the color singlet model:

$$\mathcal{B}(\chi_{c0} \to p\overline{p}) = 0.29 \times 10^{-5}$$
$$\mathcal{B}(\chi_{c2} \to p\overline{p}) = 0.84 \times 10^{-5}$$

which are far lower than the experimental values.

Use color octet contributions to correct the discrepancy and predict other di-baryon rates:

	Bra	nching F	ractions of χ_{c1}	Br	anching	Fractions of χ_{c2}
Decay Mode	COM	PDG	NEW from BESIII	COM	PDG	NEW from BESIII
$p\overline{p}$	6.5	7.3 ± 0.4	_	7.8	7.2 ± 0.4	_
$n\overline{n}$	6.5	_	—	7.8	_	_
$\Lambda\overline{\Lambda}$	3.9	11.8 ± 1.9	$12.2\pm1.1\pm1.1$	3.5	18.6 ± 2.7	$20.8\pm1.6\pm2.2$
$\Sigma^0 \overline{\Sigma}^0$	3.3	< 4	$3.8\pm1.0\pm0.5$	5.0	< 8	$4.0\pm1.1\pm0.4$
$\Sigma^+\overline{\Sigma}^-$	3.3	< 6	$5.4\pm1.5\pm0.4$	5.0	< 7	$4.9\pm1.9\pm0.6$
$\Xi^0\overline{\Xi}^0$	2.5	< 6	—	3.7	< 11	—
$\Xi^-\overline{\Xi}^+$	2.5	8.4 ± 2.3	—	3.7	15.5 ± 3.5	—
$\Delta\overline{\Delta}$	3.9	_	_	6.3	_	_
$\Sigma^{+*}(1385)\overline{\Sigma}^{-*}(1385)$	2.1	- /	$4.6 \pm 2.7 \pm 1.0 \ (< 9.3)$	3.6	-	$8.1 \pm 4.4 \pm 1.8 \ (< 16)$
$\Sigma^{-*}(1385)\overline{\Sigma}^{+*}(1385)$	2.1	_	$1.7 \pm 2.0 \pm 0.3 \ (< 5.4)$	3.6	_	$0.1 \pm 3.7 \pm 0.3 \; (< 7.2)$
[1] *[1]*	1.1	_		$\left\ 2.1 \right\ $	_	
$\Lambda(1520)\overline{\Lambda}(1520)$	_	_	< 8.6	_	_	51 ± 13

(Note that χ_{c0} decays are suppressed by the "helicity selection rule.")

The "Color Octet Model" and χ_{cJ} di-Baryon Decays

Using only the color singlet model:

$$\mathcal{B}(\chi_{c0} \to p\overline{p}) = 0.29 \times 10^{-5}$$
$$\mathcal{B}(\chi_{c2} \to p\overline{p}) = 0.84 \times 10^{-5}$$

which are far lower than the experimental values.

	Bra	nching F	ractions of X c1	Br	anching	Fractions of χ _{c2}
Decay Mode	COM	PDG	NEW from BESIII	COM	PDG	NEW from BESIII
$p\overline{p}$	6.5	7.3 ± 0.4	_	7.8	7.2 ± 0.4	
$n\overline{n}$	6.5		—	7.8	_	_
$\Lambda\overline{\Lambda}$	3.9	11.8 ± 1.9	$12.2 \pm 1.1 \pm 1.1$	3.5	$ 18.6 \pm 2.7 $	$20.8 \pm 1.6 \pm 2.2$
$\Sigma^0 \overline{\Sigma}^0$	3.3	< 4	$3.8\pm1.0\pm0.5$	5.0	< 8	$4.0\pm1.1\pm0.4$
$\Sigma^+\overline{\Sigma}^-$	3.3	< 6	$5.4\pm1.5\pm0.4$	5.0	< 7	$4.9\pm1.9\pm0.6$
$\Xi^0\overline{\Xi}^0$	2.5	< 6	_	3.7	< 11	_
$\Xi^-\overline{\Xi}^+$	2.5	8.4 ± 2.3	_	3.7	15.5 ± 3.5	_
$\Delta\overline{\Delta}$	3.9	_	_	6.3	_	_
$\Sigma^{+*}(1385)\overline{\Sigma}^{-*}(1385)$	2.1	_	$4.6 \pm 2.7 \pm 1.0 \ (< 9.3)$	3.6	_	$8.1 \pm 4.4 \pm 1.8 \ (< 16)$
$\Sigma^{-*}(1385)\overline{\Sigma}^{+*}(1385)$	2.1	_	$1.7 \pm 2.0 \pm 0.3 \ (< 5.4)$	3.6	_	$0.1 \pm 3.7 \pm 0.3 \ (< 7.2)$
	1.1	_	_	2.1	_	_
$\Lambda(1520)\overline{\Lambda}(1520)$	_	_	< 8.6	_	_	51 ± 13

Use color octet contributions to correct the discrepancy and predict other di-baryon rates:

(Note that χ_{c0} decays are suppressed by the "helicity selection rule.")

3. χ_{cJ} di-Baryon Decays at BESIII (PRD 83, 112009 (2011))

Search for $\chi_{cJ} \to \Lambda(1520)\overline{\Lambda}(1520)$ through $\chi_{cJ} \to K^+K^-p\overline{p}$.

 $\mathcal{B}(\chi_{cJ} \to \Lambda(1520)\overline{\Lambda}(1520))$ rates are perhaps surprisingly large, comparable to $\mathcal{B}(\chi_{cJ} \to \Lambda\overline{\Lambda})$

Importance of the $\chi_{cJ}(1P)$ States

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

Q

• Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

 \boldsymbol{C}

Importance of the $\chi_{cJ}(1P)$ States

C • $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through: $\chi_{c0,2} \rightarrow gg$ $\chi_{c0,2} \to \gamma$ corrections to EM perturbative QCD processes gconsiderations \overline{C} 9 \overline{C} \overline{C} • Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful

• Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

g

 \overline{C}

Amplitude Analysis of $\chi_{c1} \rightarrow \eta^{(\prime)}\pi^+\pi^-$ at CLEO-c (*PRD 83, 112009 (2011*))

Search for states with exotic J^{PC} (i.e. J^{PC} forbidden in the quark model).

χ_{c1} Decay Mode	L	Isobar J^{PC}
$a_0\pi; a_0 \to \eta^{(\prime)}\pi$	P	0++
$\pi_1\pi; \ \pi_1 \to \eta^{(\prime)}\pi$	S, D	1^{-+}
$a_2\pi; a_2 \to \eta^{(\prime)}\pi$	P, F	2^{++}
$a_4\pi; a_4 \to \eta^{(\prime)}\pi$	F, H	4^{++}
$f_0\eta^{(\prime)}; f_0 \to \pi\pi$	P	0^{++}
$f_2\eta^{(\prime)}; f_2 \to \pi\pi$	P, F	2^{++}
$f_4\eta^{(\prime)}; f_4 \to \pi\pi$	F, H	4^{++}

Possible substructure in $\chi_{c1} \rightarrow \eta^{(\prime)} \pi^+ \pi^-$

Advantages of these χ_{c1} decays:

 \Rightarrow the only χ_{c1} S-wave decay is through $\pi_1 \pi$ (*the* π_1 *has exotic* $J^{PC} = 1^{-+}$)

 \Rightarrow the " $\pi_1(1600)$ " has been observed by BNL's E852 in $\pi^-p \rightarrow \eta' \pi^-p$ (*PRL 86, 3977 (2001)*)

Amplitude Analysis of $\chi_{c1} \rightarrow \eta^{(\prime)}\pi^+\pi^-$ at CLEO-c (*PRD 83*, 112009 (2011))

Select clean samples of $\chi_{c1} \rightarrow \eta \pi^+ \pi^-$ and $\chi_{c1} \rightarrow \eta' \pi^+ \pi^-$:

Amplitude Analysis of $\chi_{c1} \rightarrow \eta^{(\prime)}\pi^+\pi^-$ at CLEO-c (*PRD 83*, 112009 (2011))

Perform an amplitude analysis of the $\eta\pi^+\pi^-$ and $\eta'\pi^+\pi^-$ systems:

Amplitude Analysis of $\chi_{c1} \rightarrow \eta^{(\prime)}\pi^+\pi^-$ at CLEO-c

(PRD 83, 112009 (2011))

χ_{c1} Decay Mode	\mathcal{F} [%]	$\mathcal{B}(\chi_{c1} \rightarrow \eta^{(\prime)} \pi^+ \pi^-) \times \mathcal{F} [10^{-3}]$	N_{σ}
$\eta \pi^+ \pi^-$		$4.97 \pm 0.08 \pm 0.21 \pm 0.22$	• • •
$a_0(980)\pi$	$66.2 \pm 1.2 \pm 1.1$	$3.29 \pm 0.09 \pm 0.14 \pm 0.15$	>10
$a_2(1320)\pi$	$9.8 \pm 0.8 \pm 1.0$	$0.49 \pm 0.04 \pm 0.05 \pm 0.02$	9.7
$(\pi^+\pi^-)_S\eta$	$22.5 \pm 1.3 \pm 2.5$	$1.12 \pm 0.06 \pm 0.13 \pm 0.05$	>10
$S^0_{\pi\pi}\eta$	$12.1 \pm 1.7 \pm 5.6$	$0.60 \pm 0.08 \pm 0.28 \pm 0.03$	>10
$S^1_{\pi\pi}\eta$	$3.4 \pm 0.9 \pm 1.5$	$0.17 \pm 0.05 \pm 0.07 \pm 0.01$	6.0
$S_{KK}\eta$	$3.1 \pm 0.6 \pm 0.4$	$0.15 \pm 0.03 \pm 0.02 \pm 0.01$	9.4
$f_2(1270)\eta$	$7.4 \pm 0.8 \pm 0.6$	$0.37 \pm 0.04 \pm 0.04 \pm 0.02$	>10
$f_4(2050)\eta$	$1.0 \pm 0.3 \pm 0.3$	$0.05 \pm 0.01 \pm 0.02 \pm 0.00$	5.2
$^{*}\pi_{1}(1600)\pi$	• • •	< 0.031	0.7
$\overline{\eta^{\prime}\pi^{+}\pi^{-}}$		$1.90 \pm 0.07 \pm 0.08 \pm 0.09$	• • •
$a_0(980)\pi$	$11.0 \pm 2.3 \pm 1.8$	$0.21 \pm 0.04 \pm 0.04 \pm 0.01$	8.4
$a_2(1320)\pi$	$0.4 \pm 0.5 \pm 0.6$	< 0.031	1.4
$(\pi^+\pi^-)_S\eta$	$21.6 \pm 2.7 \pm 1.2$	$0.41 \pm 0.05 \pm 0.03 \pm 0.02$	10.2
$S^0_{\pi\pi}\eta'$	$7.0 \pm 2.2 \pm 2.3$	$0.13 \pm 0.04 \pm 0.04 \pm 0.01$	6.6
$S_{KK} \eta'$	$8.4 \pm 1.5 \pm 1.3$	$0.16 \pm 0.03 \pm 0.02 \pm 0.01$	7.5
$f_2(1270)\eta'$	$27.0 \pm 2.9 \pm 1.7$	$0.51 \pm 0.06 \pm 0.04 \pm 0.03$	>10
$^{*}f_{4}(2050)\eta^{\prime}$		< 0.010	0.4
$\pi_1(1600)\pi$	$15.1 \pm 2.7 \pm 3.2$	$0.29 \pm 0.05 \pm 0.06 \pm 0.01$	7.2

 γ

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

• Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

g

 \overline{C}

 γ

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

• Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

g

 \overline{C}

 γ

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

• Exclusive $\chi_{cJ}(1P)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

g

 γ

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

 \boldsymbol{g}

 \overline{C}

30

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

• Exclusive $\chi_{cJ}(IP)$ decays are also a source of light quark states, useful for both meson and baryon spectroscopy -- a righ set of final states allows one to isolate quantum numbers. q

 \overline{C}

 $g \quad \mathcal{C}\text{LEO-c observatio} \overline{q} \text{ of exotic } J^{\text{PC}} \text{ in } \chi_{c1} \rightarrow \eta' \pi^+ \pi^-$

 γ

 γ

• $\chi_{cJ}(1P)$ decays can probe strong force dynamics, for example, through:

