Ryan Mitchell Indiana University MIAMI 2012

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: establishing the quark model states

III. From Discovery to Precision: the quark model states at BESIII

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

Ryan Mitchell

Ryan Mitchell

I. An Introduction to Charmonium

II. The Original Era of Discovery: establishing the quark model states

III. From Discovery to Precision: the quark model states at BESIII

November (1974) Revolution

Ryan Mitchell

November (1974) Revolution

November (1974) Revolution

Theoretical Ideas on J/ψ **and** ψ' **:**

Baryon-AntiBaryon bound states (PRL34, 36 (1975))
Spin-1 meson alternative to GIM (PRL34, 37 (1975))
Three charm quarks (partners to u, d, s) (PRL34, 41 (1975))
Lighter Z ₀ (PRL34, 56 (1975))
Charmonium (PRL34, 43 (1975), PRL34, 46 (1975))

Ryan Mitchell

I. An Introduction to Charmonium

II. The Original Era of Discovery: *establishing the quark model states*

III. From Discovery to Precision: the quark model states at BESIII

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86,092009 (2012)

4. Two-photon widths of the $\chi_{c0,2}(1P)$ states and helicity analysis for $\chi_{c2}(1P) \rightarrow \gamma\gamma$ **PRD 85, 112008 (2012)**

5. Search for the hadronic transition $\chi_{cJ}(1P) \rightarrow \eta_c(1S)\pi^+\pi^$ arXiv:1208.4805

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86, 092009 (2012)

4. Two-photon widths of the $\chi_{c0,2}(1P)$ states and helicity analysis for $\chi_{c2}(1P) \rightarrow \gamma\gamma$ **PRD 85, 112008 (2012)**

5. Search for the hadronic transition $\chi_{cJ}(1P) \rightarrow \eta_c(1S)\pi^+\pi^$ arXiv:1208.4805

Ryan Mitchell

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86,092009 (2012)

4. Two-photon widths of the $\chi_{c0,2}(1P)$ states and helicity analysis for $\chi_{c2}(1P) \rightarrow \gamma\gamma$ **PRD 85, 112008 (2012)**

5. Search for the hadronic transition $\chi_{cJ}(1P) \rightarrow \eta_c(1S)\pi^+\pi^$ arXiv:1208.4805

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86, 092009 (2012)

4. Two-photon widths of the $\chi_{c0,2}(1P)$ states and helicity analysis for $\chi_{c2}(1P) \rightarrow \gamma\gamma$ **PRD 85, 112008 (2012)**

5. Search for the hadronic transition $\chi_{cJ}(1P) \rightarrow \eta_c(1S)\pi^+\pi^$ arXiv:1208.4805

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

 γ 2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86,092009 (2012)

4. Two-photon widths of the $\chi_{c0,2}(1P)$ states and helicity analysis for $\chi_{c2}(1P) \rightarrow \gamma \gamma$ PRD 85, 112008 (2012)

5. Search for the hadronic transition $\chi_{cJ}(1P) \rightarrow \eta_c(1S)\pi^+\pi^$ arXiv:1208.4805

A few BESIII charmonium results from 2012:

1. Measurements of the mass and width of the $\eta_c(1S)$ using the decay $\psi(2S) \rightarrow \gamma \eta_c(1S)$ PRL 108, 222002 (2012)

2. First observation of the M1 transition $\psi(2S) \rightarrow \gamma \eta_c(2S)$ PRL 109, 042003 (2012)

3. Study of $\psi(2S) \rightarrow \pi^0 h_c(1P)$, $h_c(1P) \rightarrow \gamma \eta_c(1S)$ via $\eta_c(1S)$ exclusive decays PRD 86, 092009 (2012)

4. Two-photon widths of the $\chi_{c0,2}(1P)$ states and helicity analysis for $\chi_{c2}(1P) \rightarrow \gamma\gamma$ **PRD 85, 112008 (2012)**

5. Search for the hadronic transition $\chi_{cJ}(1P) \rightarrow \eta_c(1S)\pi^+\pi^$ arXiv:1208.4805

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

IV. A New Era of Discovery: beyond the quark model and the role of BESIII

HYBRID CHARMONIUM?

State	<i>m</i> (MeV)	Γ (MeV)	J^{PC}	Process (mode)	Experiment $(\#\sigma)$	Year	Status
X (3872)	3871.52 ± 0.20	1.3 ± 0.6 (<2.2)	1++/2-+	$B \to K(\pi^{+}\pi^{-}J/\psi)$ $p\bar{p} \to (\pi^{+}\pi^{-}J/\psi) + \cdots$ $B \to K(\omega J/\psi)$ $B \to K(D^{*0}\bar{D^{0}})$ $B \to K(\gamma J/\psi)$ $B \to K(\gamma \psi(2S))$	Belle [85, 86] (12.8), <i>BABAR</i> [87] (8.6) CDF [88–90] (np), DØ [91] (5.2) Belle [92] (4.3), <i>BABAR</i> [93] (4.0) Belle [94, 95] (6.4), <i>BABAR</i> [96] (4.9) Belle [92] (4.0), <i>BABAR</i> [97, 98] (3.6) <i>BABAR</i> [98] (3.5), Belle [99] (0.4)	2003	ок ЕРЈ С71, 1534 (2011)
X(3915)	3915.6 ± 3.1	28 ± 10	0/2?+	$B \to K(\omega J/\psi)$ $e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [100] (8.1), <i>BABAR</i> [101] (19) Belle [102] (7.7)	2004	OK
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$\dot{5}_{5+}$	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$ $e^+e^- \rightarrow J/\psi(\ldots)$	Belle [103] (6.0) Belle [54] (5.0)	2007	NC!
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \rightarrow \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	ОК
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
<i>Y</i> (4140)	4143.4 ± 3.0	15^{+11}_{-7}	??+	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	??+	$e^+e^- \rightarrow J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \rightarrow \gamma (\pi^+\pi^- J/\psi)$ $e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0) CLEO [110] (5.4) Belle [104] (15) CLEO [111] (11)	2005	OK
				$e^+e^- \rightarrow (\pi^0\pi^0 J/\psi)$	CLEO [111] (5.1)		
Y(4274)	$4274.4_{-67}^{+8.4}$	32^{+22}_{-15}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^+$	4443_{-18}^{+24}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \rightarrow \gamma (\Lambda_c^+ \Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \rightarrow \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

Ryan Mitchell

Ryan Mitchell

IV. A New Era of Discovery

Ryan Mitchell

Ryan Mitchell

IV. A New Era of Discovery

Ryan Mitchell

IV. A New Era of Discovery

Upper Limits on B(Y \rightarrow DD) / B(Y $\rightarrow \pi\pi\psi$) (from CLEO, BaBar, and Belle)

Т	Y(4260)	<i>Y</i> (4360)
$D\bar{D}$	4.0 [16], 7.6 [27]	
$D\bar{D}^*$	45 [16], 34 [28]	
$D^* \bar{D}^*$	11 [16], 40 [28]	
$D\bar{D}^{*}\pi$	15 [16], 9 [22]	8 [22]
$D^* \bar{D}^* \pi$	8.2 [16]	
$D_s^+ D_s^-$	1.3 [16], 0.7 [29]	
$D_{s}^{+}D_{s}^{*-}$	0.8 [16], 44 [29]	
$D_{s}^{*+}D_{s}^{*-}$	9.5 [16]	

EPJ C71, 1534 (2011)

$$B(\psi^{\prime\prime} \rightarrow DD)/B(\psi^{\prime\prime} \rightarrow \pi\pi\psi) \approx 500$$

Ryan Mitchell

Theoretical Ideas on Y(4260), Y(4360):

- DD* bound states ($Y(4360) = D_sD_s^*$) (NPA815, 53 (2009))
- J/ ψ f₀ bound state (with KK $\rightarrow \pi\pi$) (PRD80, 094012 (2009))
- Tetraquarks (or two diquarks) (PRD72, 031502(R) (2005))

Hadrocharmonium (PLB666, 344 (2008))

Hybrid Charmonium

(PLB628, 215 (2005), PRD78, 094504 (2008))

Theoretical Ideas on J/ψ **and** ψ' **:**

Baryon-AntiBaryon bound states (PRL34, 36 (1975))
Spin-1 meson alternative to GIM (PRL34, 37 (1975))
Three charm quarks (partners to u, d, s) (PRL34, 41 (1975))
Lighter Z ₀ (PRL34, 56 (1975))
Charmonium (PRL34, 43 (1975), PRL34, 46 (1975))

Theoretical Ideas on Y(4260), Y(4360):

- DD* bound states ($Y(4360) = D_sD_s^*$) (NPA815, 53 (2009))
- J/ ψ f₀ bound state (with KK $\rightarrow \pi\pi$) (PRD80, 094012 (2009))
- Tetraquarks (or two diquarks) (PRD72, 031502(R) (2005))

Hadrocharmonium (PLB666, 344 (2008))

Hybrid Charmonium

(PLB628, 215 (2005), PRD78, 094504 (2008))

IV. A New Era of Discovery

Find more decays of the Y(4260) and Y(4360).

Can we show S = 0?

A quark model state with $J^{PC} = 1^{--}$ has: even L (since $P = (-1)^{L+1}$) and odd S (since $C = (-1)^{L+S}$). So $J^{PC} = 1^{--}$ and S = 0

 \Rightarrow a non-quark model state

HYBRID CHARMONIUM

Find more decays of the Y(4260) and Y(4360).

Can we show S = 0?

A quark model state with $J^{PC} = 1^{--}$ has: even L (since $P = (-1)^{L+1}$) and odd S (since $C = (-1)^{L+S}$).

So $J^{PC} = 1^{--}$ and S = 0 \Rightarrow a non-quark model state

If S = 0,
B(Y
$$\rightarrow \gamma \eta_c$$
) > B(Y $\rightarrow \gamma \chi_{c0}$)

Lattice QCD Calculations

Find more decays of the Y(4260) and Y(4360).

Can we show S = 0?

A quark model state with $J^{PC} = 1^{--}$ has: even L (since $P = (-1)^{L+1}$) and odd S (since $C = (-1)^{L+S}$). So $J^{PC} = 1^{--}$ and S = 0

 \Rightarrow a non-quark model state

If
$$S = 0$$
,
 $B(Y \rightarrow \gamma \eta_c) > B(Y \rightarrow \gamma \chi_{c0})$

If S = 0, B(Y $\rightarrow \pi^+\pi^-h_c) \approx B(Y \rightarrow \pi^+\pi^-J/\psi)$?

Ryan Mitchell

Data-taking plan at BESIII:

collect \geq 500 pb⁻¹ at 4260 MeV

collect \geq 500 pb⁻¹ at 4360 MeV

to study Y(4260) and Y(4360) decays.

Run "on-resonance" to maximize statistics.

Use two points to study energy-dependence.

Data-taking is beginning NOW!

A few key analyses:

- 1. Measurement of $B(Y(4260) \rightarrow \gamma \chi_{c0})/$ $B(Y(4260) \rightarrow \gamma \eta_c)$ *to test lattice QCD to test S = 0 vs. S = 1*
- 2. Measurement of $B(Y(4260) \rightarrow \pi^+\pi^-h_c(1P))/$ $B(Y(4260) \rightarrow \pi^+\pi^-J/\psi)$ *to help determine the quark spinalignment of the Y(4260)*
- 3. Dalitz analyses of $Y(4260) \rightarrow \pi^+\pi^- J/\psi$ and $Y(4360) \rightarrow \pi^+\pi^-\psi(2S)$ to look for charged Z_c states
- 4. Measurement of $B(Y(4360) \rightarrow \pi^+\pi^-h_c(2P))/$ $B(Y(4360) \rightarrow \pi^+\pi^-\psi(2S))?$ *to discover the* $h_c(2P)?$ *to test* S = 0 vs. S = 1

(and searches for any other decay modes)

Summary

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

Summary

- I. An Introduction to Charmonium
- II. The Original Era of Discovery: *establishing the quark model states*
- III. From Discovery to Precision: the quark model states at BESIII

