#### Studies of Charmonium at BESIII

Rong-Gang Ping
(For the BESIII Collaboration)
Institute of High Energy Physics, CAS



2015 European Nuclear Physic Conference, 31 Aug.-4 Sept., 2015, Groningen University

#### Introduction

[GeV/c<sup>2</sup>]

MASS



#### Vector charmonium data sets

| Vector charmonium | Previous data              | BESIII now                     | Goal                |
|-------------------|----------------------------|--------------------------------|---------------------|
| J <i>/ψ</i>       | BESII: 58 M                | 1.2B(20×BESII)                 | 10 B                |
| $\psi$ (3686)     | CLEO: 28 M                 | 0.5B(20×CLEO)                  | 3 B                 |
| $\psi(3770)$      | CLEO: 0.8 fb <sup>-1</sup> | 2.9fb <sup>-1</sup> (3.5×CLEO) | 20 fb <sup>-1</sup> |

- $\eta_c$ ,  $\eta_c(2S)$ ,  $\chi_{cJ}$  are available via  $\gamma$  transition, and  $h_c$  available via pion transiton.
- charmonium physics
  - $\rho\pi$  puzzle, and violation of the 12% rule
  - non- $D\bar{D}$  decays of  $\psi(3770)$
  - light hadron structure and properties
- rare decays:  $J/\psi \to \gamma\gamma$ ,  $\gamma\phi$ ,  $\phi\pi^0$



# $\psi(3770) \rightarrow \gamma \eta_c, \ \gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$



- If  $\psi(3770)$  is assigned as  $1^3D_1$  state, the radiative transitions  $\psi(3770) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$  are supposed to be highly suppressed.
- High multipoles beyond the leading one could be contributed.

$$B(\psi(3770) \rightarrow \gamma \eta_c) = 6.3^{+8.4}_{-4.4} \times 10^{-4}$$
 PRD 84, 074005 (2011)

$$B(\psi(3770) \to \gamma \eta_c(2S)) = 6.7^{+7.2}_{-4.4} \times 10^{-5}$$
 BESIII: the 2.92 fb<sup>-1</sup>  $\psi$ " data set





Phys. Rev. D 89, 112005

#### $\psi(3770) \rightarrow \gamma \eta_c, \ \gamma \eta_c(2S) \rightarrow \gamma K_S^0 K \pi$



| Quantity                                                                                     | $\eta_c$                  | $\eta_c(2S)$           | X c1                     |
|----------------------------------------------------------------------------------------------|---------------------------|------------------------|--------------------------|
| $N_{ m obs}$                                                                                 | $29.3 \pm 18.2$           | $0.4 \pm 8.5$          | $34.9 \pm 9.8$           |
| $N_{ m up}$                                                                                  | 56.8                      | 16.1                   |                          |
| $\epsilon$ (%)                                                                               | 27.87                     | 25.24                  | 28.46                    |
| $\mathcal{B}(\psi(3770) \to \gamma X \to \gamma K_S^0 K^{\pm} \pi^{\mp}) \ (\times 10^{-6})$ | < 16                      | < 5.6                  | $8.51 \pm 2.39 \pm 1.42$ |
| $\mathcal{B}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$                                    | < 0.68                    | < 2.0                  | $2.33 \pm 0.65 \pm 0.43$ |
| $\mathcal{B}_{\text{CLEO}}(\psi(3770) \to \gamma X) \ (\times 10^{-3})$                      |                           |                        | $2.9 \pm 0.5 \pm 0.4$    |
| $\Gamma(\psi(3770) \to \gamma X) \text{ (keV)}$                                              | < 19                      | < 55                   |                          |
| $\Gamma_{IML}$ (keV)                                                                         | $17.14^{+22.93}_{-12.03}$ | $1.82^{+1.95}_{-1.19}$ |                          |
| $\Gamma_{LQCD}$ (keV)                                                                        | $10 \pm 11$               |                        |                          |

- Upper limites are set for the radiative transitions  $\psi(3770) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$
- The upper limits for the  $\Gamma(\psi(3770) \to \gamma \eta_c/\eta_c(2S))$  cover the theoretical predictions, but the upper limits for  $\Gamma(\psi(3770) \to \gamma \eta_c(2S))$  is too high due to the large systematic uncertainties.

### $\psi(3770) \rightarrow \gamma \chi_{cJ} \text{ with } \chi_{cJ} \rightarrow \gamma J / \psi \rightarrow \gamma l^+ l^-$



- No significant non  $D\overline{D}$  exclusive decays are established. How to understand the  $\psi(3770)$  decay mechanisms and properties?
- If it contains additional light quarks or gluons, it may have large branching fractios decays into ligh hadrons.
- Light hadron transition or radiative transitions, e.g.  $\pi\pi J/\psi$ ,  $\pi J/\psi$ ,  $\eta J/\psi$ , and  $\gamma \chi_{cJ}$ , can probe the  $\psi(3770)$

| Radiative decays   |         |           |                     |        |     |  |
|--------------------|---------|-----------|---------------------|--------|-----|--|
| $\gamma \chi_{c2}$ |         | < 9       | $\times 10^{-4}$    | CL=90% | 211 |  |
| $\gamma \chi_{c1}$ | PDG2014 | ( 2.9 ±0. | 6) $\times 10^{-3}$ |        | 253 |  |
| $\gamma \chi_{c0}$ |         | ( 7.3 ±0. | 9) $\times 10^{-3}$ |        | 341 |  |

• *S - D* mixing model: (PRD44,3562; PRD64,094002, PRD69,094019)

$$\Gamma(\psi(3770) \rightarrow \gamma \chi_{c1})$$
: 59~183 KeV

 $\Gamma(\psi(3770) \rightarrow \gamma \chi_{c2})$ : 3~24 KeV

Large uncertainties!

#### arXiv:1504.07450v01





3.5

3.45

3.55

 $M_{\gamma^H J/\psi}$  (GeV/c<sup>2</sup>)

3.6

100

- •The analysis is based on the 2.92 fb<sup>-1</sup>  $\psi$  " data.
- •The  $\chi_{cI}$  are reconstructed with the decay

$$\chi_{cJ} \to \gamma J/\psi \to \gamma l^+ l^-$$

| Experiment /Theory                                                | $\Gamma(\psi(3770) \to \gamma \chi_{cJ}) \text{ (keV)}$ |            |  |
|-------------------------------------------------------------------|---------------------------------------------------------|------------|--|
| Experiment/Theory                                                 | J=1                                                     | J=2        |  |
| This work                                                         | $67.5 \pm 4.1 \pm 6.7$                                  | < 17.4     |  |
| Ding-Qin-Chao [12]                                                |                                                         |            |  |
| non-relativistic                                                  | 95                                                      | 3.6        |  |
| relativistic                                                      | 72                                                      | 3.0        |  |
| Rosner $S$ - $D$ mixing [13]                                      |                                                         |            |  |
| $\phi = 12^{\circ} [13]$                                          | $73 \pm 9$                                              | $24 \pm 4$ |  |
| $\phi = (10.6 \pm 1.3)^{\circ} [32]$                              | $79 \pm 6$                                              | $21 \pm 3$ |  |
| $\phi = 0^{\circ} \text{ (pure } 1^{3}D_{1} \text{ state) } [32]$ | 133                                                     | 4.8        |  |
| Eichten-Lane-Quigg [14]                                           |                                                         |            |  |
| non-relativistic                                                  | 183                                                     | 3.2        |  |
| with coupled-channel corr.                                        | 59                                                      | 3.9        |  |
| Barnes-Godfrey-Swanson [15]                                       |                                                         |            |  |
| non-relativistic                                                  | 125                                                     | 4.9        |  |
| relativistic                                                      | 77                                                      | 3.3        |  |

$$\mathcal{B}(\psi(3770) \to \gamma \chi_{c1}) = (2.48 \pm 0.15 \pm 0.23) \times 10^{-3},$$

$$\mathcal{B}(\psi(3770) \to \gamma \chi_{c2}) < 0.64 \times 10^{-3}$$

### Searches for isospin-violating transition $\chi_{c0.2} \to \pi^0 \eta_c$



- In quark model, the isospin-violating is broken due to the electromagnetic interaction or the up-down quark mass difference. The expected decay rates are very small.
- However, a larger isospin decay ratio is observed in charmonium transitions, e.g. R=Br( $\psi(2S) \rightarrow \pi^0 J/\psi$ )/Br ( $\psi(2S) \rightarrow \eta J/\psi$ )=0.374 ± 0.072, indicates the important role played by the nonperturbative effects. (PRL103,082003)
- Searches for the isospin-violating decay  $\chi_{cI} \to \pi^0 \eta_c$  gives insights in the isospin-violating mechanisms.
- QCD multipole expansion gives the relation:  $Br(\chi_{c0} \to \pi^0 \eta_c) \approx Br(\chi_{c1} \to \pi^+ \pi^- \eta_c)$ (PRD86, 074033), and  $Br(\chi_{c1} \to \pi^+ \pi^- \eta_c) \approx (2.22 \pm 1.24)\%$ . (PRD 75, 054019)
- The analysis is based on the 106 million  $\psi(2S)$  data set at the BESIII, and the  $\eta_c$  is constructed with the decay  $\eta_c \to K_S^0 K^{\pm} \pi^{\mp}$ .

### Searches for isospin-violating transition $\chi_{c0,2} \to \pi^0 \eta_c$



- The peack near 3.12 GeV is due to the background  $\psi(2S) \rightarrow \pi^0 \pi^0 J / \psi$ .
- No significant  $\eta_c$  signals are observed, and upper limits are set. arXiv: 1502.02641





|                                          | $\chi_{c0} \to \pi^0 \eta_c$ | $\chi_{c2} \to \pi^0 \eta_c$ |
|------------------------------------------|------------------------------|------------------------------|
| $N_J^{UL}$                               | 14.1                         | 35.9                         |
| $\varepsilon_J$                          | 5.8%                         | 8.6%                         |
| $\delta_J$                               | 13.8%                        | 20.2%                        |
| $B(\chi_{cJ} \to \pi^0 \eta_c)(10^{-3})$ | < 1.6                        | < 3.2                        |

#### PRD 91, 112018 (2015)

- Comparison to the QCD multipole expansion if  $B(\chi_{c0} \to \pi^0 \eta_c) = 0.022$ , then one expect the obsvered events in the  $106 \times 10^6$  data sets  $N^{obs} = 302.$
- The comparison indicates that the QCD multipole expansion predicts that the branching fraction is 20 times of magnitude larger than our measurement

### Search for C – violation decay $J/\psi \to \gamma\gamma, \gamma\phi$

- The C-parity violation is forbidden in the electromagnetic interaction, any observation of the  $J/\psi \to \gamma\gamma$  decay indicates a new physics.
- Based on the 106 million  $\psi(3686)$  data set, we use the decay  $\psi(2S) \to \pi^+\pi^- J/\psi$  to search for  $J/\psi \to \gamma\gamma$
- Dominant backgrounds,  $J/\psi \to \gamma \pi^0$ ,  $\gamma \eta$ ,  $\gamma \eta_c \to 3\gamma$ , and  $J/\psi \to 3\gamma$ , are carefully studied with MC simulation. PRD 90, 092002

### No *C*-violation decays were observed!







## Search for OZI-suppressed decay $J/\psi \to \pi^0 \phi$



- The decay  $J/\psi \to \phi \pi^0$  is highly suppressed dut to double OZI rule.
- The observation is helpful to understand the  $\omega \phi$  mixing and SU(3) flavor symmetry breaking.
- The analysis is based on the 1.31 billion  $J/\psi$  data sample, and the  $\pi^0$  candidates are reconstructed with two photons
- The structure at the  $\phi$  mass region is assumed due to the interference between the J/ $\psi \to \phi \pi^0$  and  $K^+K^-\pi^0$  decays.



#### Phys.Rev. D91 ,11, 112001 (2015)

Two solutions are obtained.

| Solution | $N^{ m sig}$     | δ                               | $2\Delta \log \mathcal{L}/N_f$ | Z           |
|----------|------------------|---------------------------------|--------------------------------|-------------|
| Ι        | $838.5 \pm 45.8$ | $-95.9^{\circ} \pm 1.5^{\circ}$ | 45.8/2                         | $6.4\sigma$ |
| II       | $35.3 \pm 9.3$   | $-152.1^{\circ}\pm7.7^{\circ}$  | 45.8/2                         | $6.4\sigma$ |

Branching fraction:

I:  $[2.94 \pm 0.16(\text{stat.}) \pm 0.16(\text{syst.})] \times 10^{-6}$ 

II:  $[1.24 \pm 0.33(\text{stat.}) \pm 0.30(\text{syst.})] \times 10^{-7}$ 

# Search for OZI-suppressed decay $J/\psi \to \pi^0 \phi$



#### Nonet symmetry broken

$$\frac{B(\phi \pi^0)}{B(\omega \pi^0)} = \left(\frac{p_\phi}{p_\omega}\right)^3 \frac{(r_E \tan \theta_V - 1/\sqrt{2})^2}{(r_E + \tan \theta_V / \sqrt{2})^2}$$

 $r_E = 1$  (nonet symmetry)

$$\theta_V = arc \tan(1/\sqrt{2})$$
 (ideal  $\omega - \phi$  mixing)



ideal mixing:  $r_E - 1 = (21.0 \pm 1.6)\%$  or  $(-16.4 \pm 1.0)\%$  (solution I)

$$(3.9 \pm 0.8)\%$$
 or  $(-3.7 \pm 0.7)\%$  (solution II)

Nonet symmetry:  $\phi_V = |\theta_V - \theta_V^{ideal}| = 4.97^{\circ} \pm 0.33^{\circ}$  (solution I)

$$=1.03^{\circ} \pm 0.19^{\circ}$$
 (solution II)

quardratic mass formula:  $\phi_V = 3.84^{\circ}$  (PDG)

fit to radiative transition:  $3.34^{\circ} \pm 0.09^{\circ}$  (J. High Energy Phys. 0907,105)

#### Nonet asymmetry indication!

### Observation of the isospin-violating decay $J/\psi \rightarrow \phi \pi^0 f_0(980)$

- The nature of  $f_0(980)$  is a long-standing puzzle.
- It has been interpreted as a  $q\overline{q}$  state, a KK molecule, a glueball, and a four-quark state.
- Average values of  $f_0(980)$  resonance parameters :  $M=980\pm20$  MeV,  $\Gamma=40$  to 100 MeV.
- In J/ $\psi \to \gamma \eta (1405) \to \gamma \pi^0 f_0(980)$ , measured  $\Gamma = 9.5 \pm 1.1$  MeV (PRL. 108,182001)
- Not  $a_0 f_0(980)$  mixing mechanism, it was identified as a triangle singularity mechanism (PRL108,081803)
- What about  $f_0(980)$  in the decay  $J/\psi \to \phi \pi^0 f_0(980)$

#### Observation of $J/\psi \rightarrow \phi \pi^0 f_0(980)$





#### PRD92,012007





- A simultaneous fit gave M=989.4  $\pm$  1.3MeV,  $\Gamma$ =15.3  $\pm$  4.7 MeV.
- Measured mass and width consistent with those measured in  $J/\psi \rightarrow \gamma \pi^0 f_0(980)$ .

• 
$$\mathcal{B}(f_1 \to \pi^0 f_0 \to \pi^0 \pi^+ \pi^-) / \mathcal{B}(f_1 \to \pi^0 a_0^0 \to \pi^0 \pi^0 \eta) = (3.6 \pm 1.4)\%$$

$$\mathcal{B}(\eta(1405) \to \pi^0 f_0 \to \pi^0 \pi^+ \pi^-) / \mathcal{B}(\eta(1405) \to \pi^0 a_0^0 \to \pi^0 \pi^0 \eta) = (17.9 \pm 4.2)\%$$

• This analysis supports the argument that the nature of the resonances  $a_0$  and  $f_0$  as dynamically generated makes the amount of isospin breaking strongly dependent on the physical process.

# Observation and Spin-Parity Determination of the X(1835) in $J/\psi \to \gamma K_S^0 K_S^0 \eta$

- The search for unconventional states is one of the main interests in experimental particle physics.
- The X(1835) was observed in  $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta^-$  (PRL95, 262001)
- Possible interpretations include a ppbar bound state (EPJC 53, 413), a second radial excitation of the  $\eta'$  (PRD73, 014023), and a pseudo-scalar glueball (PRD74, 034019).
- In addition,  $p\bar{p}$  threshold enhancement observed in  $J/\psi \to \gamma p\bar{p}$  (CPC34, 421) was determined to be state with  $J^{PC}=0^{-+}$ , its mass and width consistent with X(1835).

# Observation of X(1835) in $J/\psi \rightarrow \gamma K_S^0 K_S^0 \eta$



- The data is described with  $X(1835) \rightarrow f_0(980)\eta$ ,  $X(1560) \rightarrow f_0(980)\eta$ , and direct 3-body decay.
- Data favors for  $0^{-1}$  hypothesis for X(1835) and X(1560).
- Mass and width are measured:

X(1835): M=1844 ± 9(stat)<sup>+16</sup><sub>-25</sub> (syst) MeV,  $\Gamma$ =192<sup>+20</sup><sub>-17</sub> (stat)<sup>+62</sup><sub>-43</sub> (syst) MeV

# Summary



By using BESIII data sets taken at  $J/\psi$ ,  $\psi(3686)$  and  $\psi(3770)$  peak, we search for the radiative and rare decays:

- No significant decays of  $\psi(3773) \rightarrow \gamma \eta_c, \gamma \eta_c(2S)$  are observed.
- The measurement of Br( $\psi(3770) \rightarrow \gamma \chi_{c1}$ ) is improved.
- No significant decays for the isospin-violating transition  $\chi_{c0/2} \to \pi^0 \eta_c$  are observed.
- The double OZI suppressed decay  $J/\psi \to \pi^0 \phi$ , and isospin violation decay  $J/\psi \to \phi \pi^0 f_0(980)$  observed.
- The X(1835) identified with  $0^{-+}$  observed in  $J/\psi \to \gamma K_S^0 K_S^0 \eta$ .

A more interesting light hadron decays of charmonium will come soon!