Observation of $e^+e^- \rightarrow \gamma$ X(3872), X(3872) $\rightarrow \pi^+\pi^-$ J/ ψ

Qing Gao, Ke Li (for the BESIII collabration)

1 Abstract

Using data samples collected with the BESIII detector operating at the BEPCII storage ring at central-of-mass(CM) energies from 4.009 to 4.420 GeV, the $e^+e^- \rightarrow \gamma X(3872)$ process is observed with a statistical significance of more than 5σ . The **measured mass** is in agreement with previous measurements. The **cross section** of $e^+e^- \rightarrow \gamma X(3872)$ at CM energies 4.009, 4.230, 4.260, and 4.360 GeV are reported. The results support the possibility that $Y(4260) \rightarrow \gamma X(3872)$.

2

Introduction

- X(3872) was **discovered** by Belle in $B^{\pm} \rightarrow K^{\pm} \pi^{+} \pi^{-} J/\psi$ in 2003 (left).
- **❖** LHCb determined it has quantum numbers $J^{PC} = 1^{++}$ using $B^+ \rightarrow X(3872)K^+$ and $X(3872) \rightarrow \pi^+ \pi^- J/\psi$ (middle).
- * CDF investigated the $\pi^{+}\pi^{-}$ mass spectrum (right) in X(3872) decays, and found it is dominated by the $\rho^{0}(770)$ resonance.

Since the mass is near DD* threshold, the X(3872) was interpreted as a good candidate for a hadronic molecule or a tetraquark state. Currently, the X(3872) has only been observed in B meson decays and hadron collisions.
BESIII can hunt for it in excited 1⁻⁻ E1 transitions, using the process e*e· → γ
X(3872) → γπ*1/ψ.

3 Data sample and MC simulation

CM energies and luminosities:

Energy (GeV)	Luminosity (pb ⁻¹)	Energy (GeV)	Luminosity (pb ⁻¹)
4.009	482	4.260	827
4.190	43.0	4.310	44.9
4.210	54.7	4.360	545
4.220	54.6	4.390	55.1
4.230	533	4.420	44.7
4.245	56.0	. (

Error of the CM energy is ±1.0 MeV, measured using Compton back scattering technique

Uncertainty of the integrated luminosity is 1.0%, measured using Bhabha events.

Signal MC

 $e^+e^- \rightarrow \gamma X(3872)$ at each CM energy point with $X(3872) \rightarrow \rho^0 J/\psi$, $J/\psi \rightarrow (\gamma)\mu\mu/ee$, $\rho^0 \rightarrow \pi^+\pi^-$

Inlcusive MC: 500 pb⁻¹ at 4.26 GeV

Background: Y(4260) $\rightarrow \eta' J/\psi (\eta' \rightarrow \gamma \rho^0/\pi^+\pi^-\eta), \quad e^+e^- \rightarrow \pi^+\pi^-J/\psi$

Event selection for

 $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$, $J/\psi \rightarrow (\gamma)\mu^+\mu^-/e^+e^-$

- \succ 4 charged tracks with 0 net charge. $|R_{xy}| < 1 \text{cm}$, $|R_z| < 10 \text{cm}$, $|\cos \theta| < 0.93$ for each track.
- > Particle separation
 - π : momentum (p) < 1 GeV/c
 - e : p > 1 GeV/c && energy (E) > 1.1 GeV
 - $-\mu: p > 1 \text{ GeV}/c \&\& E < 0.35 \text{ GeV}$
- ➤ The largest energy photon
 - $-0 < t < 700 \text{ ns}, 1 < N_{\nu} < 5$
 - E > 0.025 GeV as $|\cos \theta| < 0.8$ and
 - $E > 0.025 \text{ GeV as } |\cos\theta| < 0.8 \text{ and}$ $E > 0.05 \text{GeV as } 0.86 < |\cos\theta| < 0.92$
- 20° away from any charged track
- > 4C kinematic fit χ²<60
- \blacktriangleright M($\gamma \pi^+ \pi^-$) > 0.6GeV, reject $\eta J/\psi$ events

 $> \cos\theta_{\pi\pi} < 0.98 \text{ reject } \gamma^* \rightarrow e^+e^-$

Data analysis

- ✓ After imposing all requirements, there's a **clear J/\psi** signal in the l⁺l⁻ invariant mass distribution when 3.80 < M(π ⁺ π J/ ψ) < 3.95 (**Fig.1**). We require the J/ ψ mass window to be 3.08 < M(l⁺l⁻) < 3.12 GeV/ c^2 and sidebands as 3.0 < M(l⁺l⁻) < 3.06 GeV/ c^2 and 3.14 < M(l⁺l⁻) < 3.20 GeV/ c^2 .
- ✓ Remaining **backgrounds** mainly come from $e^+e^- \rightarrow (\gamma_{SR})\pi^+\pi^-1/\psi$, $\eta^!J/\psi$ and $\pi^+\pi^-\pi^+\pi^-(\pi^0/\gamma)$ processes. But none of them form peaks around X(3872) signal region.

- ✓ Fig.2) Huge $e^+e^- \rightarrow \gamma_{ISR} \psi(2S)$ is used to **calibrate and validate** the analysis.
- ✓ Fig.3) Fit to the $M(\pi'\pi J/\psi)$ distribution with a Gaussian function for signal and a linear background term and get the **preliminary result**: $M(X(3872)) = (3872.1\pm0.8) \text{ MeV/}c^2$, $\sigma = 2.4\pm0.7 \text{ MeV/}c^2$, $N_{obs} = 15.0\pm3.9$. It agrees with PDG value. The statistical significance of X(3872) is 5.3σ .

 Fig.4) Angular distribution of X(3872) together with pure £1 transition MC, green histogram is sideband background. It means the observed X(3872) signal can not be from detector effects.

Fig.5) The $\pi^i\pi^i$ invariant mass distribution is dominated by the ρ^0 (770) resonance, which agrees with the CDF observation (box2 right plot).

6 Systematic errors

1). X(3872) mass measurement

Source	Mass (MeV/c²)	Estimated thoughts		
Absolute mass scale	0.2	difference of fitted $\psi(2S)$ mass and PDG value		
Fit model	0.1	use Breit-Wigner convolve Gaussian to fit X(3872)		
Background shape	0.1	use background shape from $(\gamma_{\rm ISR})\pi^+\pi^-J/\psi,~\eta^{\prime}J/\psi$		
Total	0.3			

2) X(3872) cross section measurement

Source	Error (%)	Estimated thoughts	
Luminosity	1.0	bhabha events	
Tracking	4.0	0///	
Photon	1.0	J/ψ→ρπ	
Background shape	0.2	use background shape from $\eta' J/\psi$	
Y(4260) line-shape	0.6	largest difference between Belle and BABAR	
Kinematic fit	1.5	pure γ _{isR} ψ(2S) sample	
J/ w mass window	0.8	pure γ _{ISR} ψ(2S) sample	
Branching ratios of J/y→l+l-	1.0	PDG value	
Others	1.0		
Total	4.9		

7 Summary and preliminary result

- **♦ Observe** $e^+e^- \rightarrow \gamma X(3872)$ for the first time with significance > 5 σ .
- → Measured mass of the X(3872) is $M(X(3872)) = (3872.1\pm0.8\pm0.3)$ MeV/ c^2 , agrees with previous measurements well.
- Cross section of $\sigma^B[e^+e^- \rightarrow \gamma X(3872)] \times B(X(3872) \rightarrow \pi^+\pi^- J/\psi)$ is

Energy (MeV)	Efficiency (%)	1+δ	N _{evts}	σ ⁸ (pb⁻¹)
4230	31.3	0.799	4.7±2.2	0.32±0.15±0.02
4260	30.2	0.814	8.3±2.9	0.35±0.12±0.02
4009	26.1	0.861	<1.5	<0.13 (90% C.L.)
4360	21.1	1.023	<5.2	<0.39 (90% C.L.)

These results suggest that X(3872) may comes from Y(4260) decays.

→ $\sigma^{\theta}[e^+e^-\to \gamma X(3872)] \times B(X(3872)\to \pi^+\pi^-J/\psi) / \sigma^{\theta}[e^+e^-\to \pi^+\pi^-J/\psi] = (5.6\pm2.0)\times10^{-3}$ at 4.26 GeV, if we take $B(X(3872)\to \pi^+\pi^-J/\psi) \sim 5\%$, then

$$\frac{\sigma(e^+e^- \to \gamma X(3872))}{\sigma(e^+e^- \to \pi^+\pi^- J/\psi)} \sim 11.2\%$$

indicates that Y(4260) has a large E1 transition rate to the X(3872).