Hadron Spectrosocopy at BESIII

Shuangshi Fang

(for the BESIII Collaboration)

Institute of High Energy Physics, Beijing

ICHEP2014, July 2-9, Valencia, Spain

Outline

- Status of BEPCII/BESIII
- Light hadrons
- XYZ particles
- Summary

Bird view of BEPCII

Storage ring

Linac

2004: start construction 2008: test run 2009-now: data taking

BESI physics

- Charmonium(-like) physics
- Light hadron spectroscopy
- Charm physics
- τ physics

BESIII at BEPCII

W. Grad

The **BESIII** Detector

Light hadrons

• 2009+2012 : 1.3 biliion J/ψ events 0.5 billion ψ events

Observation of X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- Confirmed the enhancement observed at BESII
- M= $1795 \pm 7^{+13}_{-5} \pm 19 \pmod{\text{MeV/c2}}$, $\Gamma = 95 \pm 10^{+21}_{-34} \pm 75 \pmod{\text{MeV}}$
- Spin-parity is determined to be 0⁺
- the same as $f_0(1710)/f_0(1790)$, or a new state?

Comparisons of the observations at BES

X(18??) near the threshold position of proton-antiproton

Are they the same particle? It is crucial to identify these observations.

P١	WA in J/ψ	γ→γηη μ	PRD. 87, 092009 (2013)		
°5200 7) 90 150 00 07 100	$\chi^2/N_{bin}=2.14$	80 60 40 1 1 1 1 1 1 1 1 1 1 1 1 1	 f₀(1710) and f₀(2100) are dominant scalars 		
Events			• f _o (1500) exists (8.20	5)	
0 1 (a)	.5 2.0 2.5 3.0 Μ _{ηη} (GeV/c ²)	-1.0 -0.5 0.0 0.5 1.0 (b) cosθ _γ	 f₂'(1525) is the dominant 		
900 800 700	$\chi^2/N_{bin}=0.69$		tensor		
8600 500 400 300 200 100		$\chi^2/N_{bin}=0.68$	• f ₂ (1810) and f ₂ (234) (6.4 and 7.6 0)	0) exist	
-1.0 -(c)	$0.5 0.0 0.5 1.0 cos \theta_{\eta}$	0^{h}_{-3} -2 -1 0 1 2 3 (d) ϕ_{η}	• No evidence for f _J (2	220)	
Resonance	Mass (MeV/ c^2)	Width (MeV/ c^2)	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance	
$f_0(1500)$	1468^{+14+23}_{-15-74}	$136^{+41+28}_{-26-100}$	$(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$	8.2σ	
$f_0(1710)$	$1759 \pm 6^{+14}_{-25}$	$172 \pm 10^{+32}_{-16}$	$(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$	25.0σ	
$f_0(2100)$	$2081 \pm 13^{+24}_{-36}$	273^{+27+70}_{-24-23}	$(1.13^{+0.09+0.64}_{-0.10-0.28}) \times 10^{-4}$	13.9σ	
$f_2'(1525)$	$1513 \pm 5^{+4}_{-10}$	75^{+12+16}_{-10-8}	$(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$	11.0σ	
$f_2(1810)$	1822^{+29+66}_{-24-57}	$229^{+52+88}_{-42-155}$	$(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$	6.4σ	
$f_2(2340)$	$2362^{+31+140}_{-30-63}$	$334_{-54-100}^{+62+165}$	$(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$	7.6σ	

n and n' physics

PWA results on N* baryons in $\psi' \rightarrow \pi^0 p \bar{p}$

PRL. 110,022001(2013)

 2-body decay: ψ(2S) → Xπ⁰, X → pp̄ ψ(2S) → pN̄*, N̄* → p̄π⁰ + c.c.
 isospin conservation: Δ suppressed

Two new baryonic excited states are observed !

200 (b)						
γN(1720) N(2300)	Resonance	$M({\rm MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	ΔS	ΔN_{dof}	C.L.
5 ¹⁵⁰	N(1440)	$1390^{+11}_{-21}^{+21}_{-30}$	$340^{+46}_{-40}^{+70}_{-156}$	72.5	4	11.5σ
	N(1520)	$1510^{+3}_{-7}^{+11}_{-9}$	$115^{+20}_{-15}^{+0}_{-40}$	19.8	6	5.0σ
	N(1535)	$1535^{+9}_{-8}^{+15}_{-22}$	120^{+20}_{-20}	49.4	4	9.3σ
	N(1650)	$1650^{+5}_{-5}^{+11}_{-30}$	$150^{+21}_{-22}^{+14}_{-50}$	82.1	4	12.2σ
	N(1720)	$1700^{+30}_{-28}^{+32}_{-35}$	$450^{+109+149}_{-94-44}$	55.6	6	9.6σ
	N(2300)	$2300^{+40}_{-30}^{+109}_{-0}$	$340^{+30}_{-30}^{+110}_{-58}$	120.7	4	15.0σ
	(N(2570))	$2570^{+19}_{-10}^{+34}_{-10}$	250^{+14}_{-24}	78.9	6	11.7σ
$M_{p\pi^0}(GeV/c^2)$		10 10	21 21			

XYZ particles

• 2013: ~ 1.1, 0.8, 0.5 fb⁻¹@ 4.23, 4.26, 4.36 GeV

Observation of Zc(3900) at BESIII

 $e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^+\pi^- J/\psi$

- M = 3899.0±3.6±4.9 MeV/c²
- Γ = 46±10±20 MeV

$$e^+e^- \rightarrow \pi Z_c(4020) \rightarrow \pi^0 \pi^0 J/\psi$$

• M = 3894.8±2.3 MeV/c²

•
$$\Gamma$$
 = 29.6±8.2 MeV

Observation of Zc(4020) in $e^+e^- \rightarrow \pi \pi h_c$

Observation of Zc(3885) and Z_c(4025)

the Zc states at BESIII

	Width (MeV)	Mass (MeV/c ²)	Channel
Close to D \overline{D}^* threshold (3875 MeV)	46±10±20 29.6±8.2 (Prel.)	3899.0±3.6±4.9 3894.8±2.3(Prel.)	$\pi J/\psi$
	$24.8 \pm 3.3 \pm 11.0$	3883.9±1.5±4.2	$(D \ \overline{D}^*)^{\pm}$
	1σ difference	2σ difference	
Close to D* D* threshold	7.9±2.7±2.6	4022.9±0.8±2.7 4022.9±0.8±2.7(Prel.)	πh_c
	$24.8 \pm 5.6 \pm 7.7$	4026.3±2.6±3.7	$(D^* \ \overline{D}^*)^{\pm}$
	2σ difference	1σ difference	

- At least 4-quarks; Near threshold;
- Isospin: I=1, hint of a new spectroscopy ?
- Whether they are two states need further understanding (couple channel analysis? quantum number determination? interference?)

• BESIII is successfully operating since 2008

□ World largest data samples at J/ψ , ψ' , ψ (3770), ψ (4040), Y(4260) already collected, more data in future coming soon

Hadron spectroscopy

- Observation of X(1840)
- **Ο** PWA of $J/\psi \rightarrow \gamma \eta \eta$, γωφ
- \Box η/η' physics
- Observation of Zc states, hint of a new spectroscopy !

• Expect more results from BESIII in the future !

Many thanks for your attention !