Barnes, Godfrey, Swanson PRD72, 054026 (2005)

$$V(r) = -\frac{4}{3} \frac{\alpha_s}{r} + kr$$

$$+ \frac{32\pi\alpha_s}{9m_c^2} \delta_r \vec{S}_c \vec{S}_{\bar{c}}$$

$$+ \frac{1}{m_c^2} \left(\frac{2\alpha_s}{r^3} - \frac{k}{2r} \right) \vec{L} \vec{S}$$

$$+ \frac{1}{m_c^2} \frac{4\alpha_s}{r^3} \left(\frac{3\vec{S}_c \vec{r} \cdot \vec{S}_{\bar{c}} \vec{r}}{r^2} - \vec{S}_c \vec{S}_{\bar{c}} \right)$$

Barnes, Godfrey, Swanson.
PRD72, 054026 (2005)

$$V(r) = -\frac{4}{3} \frac{\alpha_s}{r} + kr$$

$$+ \frac{32\pi\alpha_s}{9m_c^2} \delta_r \vec{S_c} \vec{S_c}$$

$$+ \frac{1}{m_c^2} \left(\frac{2\alpha_s}{r^3} - \frac{k}{2r}\right) \vec{L} \vec{S}$$

$$+ \frac{1}{m_c^2} \frac{4\alpha_s}{r^3} \left(\frac{3\vec{S_c} \vec{r} \cdot \vec{S_c} \vec{r}}{r^2} - \vec{S_c} \vec{S_c}\right)$$

P-wave hyperfine splitting:

$$\propto |\psi(0)|^2$$

$$m(h_c) = \frac{m(\chi_{c0}) + 3 \cdot m(\chi_{c1}) + 5 \cdot m(\chi_{c2})}{9}$$

 $\Delta M_{
m hf} = m_{h_c} - \bar{m}_{\chi_c}$ deviation from zero?

breaking of isospin symmetry: u <-> d

probe the ratio m_u/m_d

$$\frac{m_u}{m_d} \Leftrightarrow R = \frac{B(\Psi' \to \pi^0 J/\psi)}{B(\Psi' \to \eta J/\psi)}$$

breaking of isospin symmetry: u <-> d

probe the ratio mu/md

size of hadronic loops in charmonium

$$\frac{m_u}{m_d} \Leftrightarrow R = \frac{B(\Psi' \to \pi^0 J/\psi)}{B(\Psi' \to \eta J/\psi)} + loops!$$

breaking of isospin symmetry: u <-> d

probe the ratio mu/md

size of hadronic loops in charmonium

understand nature of the X(3872) state

breaking of isospin symmetry: u <-> d

probe the ratio mu/md

 $X(3872) \to J/\Psi \pi^+ \pi^-$

size of hadronic loops in charmonium

understand nature of the X(3872) state

Experiment	
CDF 2	3871.61 ± 0.16 ± 0.19 MeV
BaBar (B+)	3871.4 ± 0.6 ± 0.1 MeV
BaBar (B ⁰)	3868.7 ± 1.5 ± 0.4 MeV
D0	3871.8 ± 3.1 ± 3.0 MeV
Belle	3871.84 ± 0.27 ± 0.19 MeV
LHCb	3871.96 ± 0.46 + 0.10 MeV
World Average	3871.67 ± 0.17 MeV
$M(D^0)+M(D^{*0})$	3871.79 ± 0.30 MeV
PDG2010	-Γ < 1.2 MeV —

 $\Delta m = -0.12 \pm 0.35 \text{ MeV}$

breaking of isospin symmetry: u <-> d

probe the ratio mu/md

size of hadronic loops in charmonium

understand nature of the X(3872) state

$$X(3872) o J/\Psi
ho$$

Isospin breaking enhanced for X(3872)

$$B(\psi(4010) \rightarrow \pi^0 J/\psi) < 2.8 \cdot 10^{-4}$$

Phys. Rev. D 86, 071101(R) (2012)

$$B(\psi' \rightarrow \pi^0 h_c) = (8.4 \pm 1.3 \pm 1.0) \cdot 10^{-4}$$

PRL 104, 132002 (2010)

B(ψ'
$$\rightarrow$$
π⁰J/ψ)/B(ψ' \rightarrow ηJ/ψ) = (3.74 ±0.06 ± 0.04) · 10⁻²

PRD 86, 092008 (2012)

$$B(\chi_{c0,2} \rightarrow \pi^0 \eta_c) < ?$$

In Progress

valuable input to EFT approaches (low-energy QCD expansion)

"two-photon transitions"

"two-photon transitions"

Phys. Rev. Lett 109, 172002 (2012)

$$B(\psi' \rightarrow \gamma \gamma J/\psi) = (3.1 + 0.6_{(stat)} + 0.8_{(syst)} - 1.0_{(syst)})x10^{-4}$$

physics: sensitive probe to hadronic loop effects!

"two-photon decays"

ideal probe to test validity of perturbative QCD

analog to P-wave triplet states in positronium, in lowest order:

$$R_{th}^{(0)} = \frac{\Gamma(^{3}P_{2} \to \gamma\gamma)}{\Gamma(^{3}P_{0} \to \gamma\gamma)} = 4/15 \approx 0.27$$

"two-photon decays"

Quantity	χ_{c0}	χ_{c2}
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^5$	$2.17 \pm 0.17 \pm 0.12$	$2.81 \pm 0.17 \pm 0.15$
$\mathcal{B}_2 \times 10^4$	$2.24 \pm 0.19 \pm 0.12 \pm 0.08$	$3.21 \pm 0.18 \pm 0.17 \pm 0.13$
$\Gamma_{\gamma\gamma} \text{ (keV)}$	$2.33 \pm 0.20 \pm 0.13 \pm 0.17$	$0.63\pm0.04\pm0.04\pm0.04$
\mathcal{R}	$0.271 \pm 0.029 \pm$	$\pm 0.013 \pm 0.027$

$$R_{th}^{(0)} = \frac{\Gamma(^{3}P_{2} \to \gamma\gamma)}{\Gamma(^{3}P_{0} \to \gamma\gamma)} = 4/15 \approx 0.27$$

"two-photon decays"

Quantity	χ_{c0}	χ_{c2}
$\mathcal{B}_1 \times \mathcal{B}_2 \times 10^5$	$2.17 \pm 0.17 \pm 0.12$	$2.81 \pm 0.17 \pm 0.15$
$\mathcal{B}_2 \times 10^4$	$2.24 \pm 0.19 \pm 0.12 \pm 0.08$	$3.21 \pm 0.18 \pm 0.17 \pm 0.13$
$\Gamma_{\gamma\gamma} \text{ (keV)}$	$2.33\pm0.20\pm0.13\pm0.17$	$0.63\pm0.04\pm0.04\pm0.04$
\mathcal{R}	$0.271 \pm 0.029 \pm$	±0.013±0.027

+radiative corrections

$$R_{th}^{(1)} = 0.116 \pm 0.010$$

M. B. Voloshin, Prog. Part. Nucl. Phys. 61, 2, 455 (2008).

"two and three-photon decays"

"two and three-photon decays"

terra incognita: QCD exotics?

terra incognita: QCD exotics?

terra incognita: QCD exotics?

