

XYZ states at BESIII

Ronggang Ping

(Institute of High Energy Physics, ACS)

On behalf of BESIII collaboration

B€SⅢ

BESIII detector

Sub-detectors			Performance	
MDC	Momentum resolution		0.5%@1GeV	
	dE/dx resolution		6%	
EMC	Energy resolution		2.5%@1GeV	
	Spatial resolution		6 mm	
TOF	Time resolution	Barrel	80 ps (Bhabha)	
		Endcap	110 ps (Di-muon)	
MUC	9 layers RPC, 8 layers for endcap			

Charmonium-like state production at BESII

- •Vector ψ /Y states can be produced directly
- •C-even states can be produced from radiative transtions

ψ(4040)@4.008GeV @4.23GeV Y(4260)@4.26GeV Y(4360)@ 4.36GeV ψ(4415)@ 4.42GeV Y(4660)@ 4.6GeV

My talk based on these data samples

$\psi(4040)$	@4.009 GeV	0.5 fb ⁻¹
	@4.23,4.26 GeV	$1.1 + 0.8 \text{ fb}^{-1}$
Y(4360)	@4.36 GeV	0.5 fb^{-1}
	@4.42 GeV	1 fb ⁻¹
Y(4660)	@4.6 GeV	0.6 fb ⁻¹

Hadrons

• Hadrons:

- ✓ 2 quarks (meson) or 3 quarks (baryon)
- ✓ described with quark model (QM)

• QCD suggests :

- ✓ Molecule: bound state of two hadrons
- ✓ Multiquark state: (qqqq, qqqqq, ...)
- ✓ Glueball: (gg, ggg, ...)
- ✓ Hybrid: (qqg, ...)

pentaquark

glueball

dimeson molecule

 $q \, \bar{q} \, g$ hybrid

Search for these exotic hadrons

Charmonium spectroscopy

- Below charm threshold, all states have been observed
- Charm anti-charm potential model described spectrum very well
- Many missing states above charm threshold.
- A number of new states above charm threshold that do not fit into $c\overline{c}$ slots
 - ✓ Not all of them are charmonium
 - ✓ What are they?

X(3872)

- Observed by Belle in B[±] \rightarrow K[±] π ⁺ π -J/ ψ [PRL91,262001(2003)]
- Close to D^oD*^o mass threshold, narrow peak
- J^{PC}=1⁺⁺ [CDF (PRL98,132002) 1⁺⁺/2⁻⁺; LHCb (EPJC72,1972) 1⁺⁺]
- Nature unclear:
 - D°D*° bound state?
 - Mixture of $\chi_{c1}(2P)$ and $\overline{D^{*0}}$ bound state?
 - Conventional charmonium χ_{c1}(2P)? tetraquark? hybrid?...
- Production
 - pp collison; B decays;
 - $Y(4260) \rightarrow \gamma X(3872)$ [BESIII, PRL112, 092001 (2014)]
- Decay: $\pi^+\pi^-J/\psi$, $\pi^+\pi^-\pi^0J/\psi$, $D^0\overline{D}{}^0\pi^0$, $D^0\overline{D}{}^{*0}$, $\gamma J/\psi$, $\gamma \psi'$

B€SⅢ

Observation of $e^+e^- \rightarrow \gamma X(3872)$

BESIII, PRL112, 092001 (2014)

Clear ISR ψ' signal for data validation; X(3872) signal at around 4.23-4.26 GeV

B€SIII

Observation of $e^+e^- \rightarrow \gamma X(3872)$

Obvious X(3872) signal through radiative decay

- Seems from Y(4260) decays
- $\sigma(e^+e^- \to \pi^+\pi^- J/\psi) = (62.9 \pm 1.9 \pm 3.7) \text{ pb};$ $B(X(3872) \to \pi^+\pi^- J/\psi) = 5\%$

$$\frac{\sigma(e^+e^- \rightarrow \gamma X(3872))}{\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)} \sim 11\%$$

Y states

Mainly from B factories through ISR processes

- Y(4260): $e^+e^- \to \gamma_{ISR}\pi^+\pi^-J/\psi$
 - Observed by BaBar, confirmed by CLEO and Belle
- Y(4008): $e^+e^- \to \gamma_{ISR}\pi^+\pi^-J/\psi$
 - Only in Belle data

[PRL95,142001(2005)], 273 fb⁻¹ [PRD74,091104(R)(2006)], 13.3 fb⁻¹ [PRL99,182004(2007)], 548 fb⁻¹

- Y(4360): $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\psi(2S)$
 - Observed by BaBar, confirmed by Belle
- $Y(4660):e^+e^- \to \gamma_{ISR}\pi^+\pi^-\psi(2S)$
 - Observed by Belle, confirmed by BaBar updated analysis
- Y(4630): $e^+e^- \rightarrow \Lambda_c^+\Lambda_c^-$
 - Observed by Belle

[PRL98,212001(2007)], 298 fb⁻¹ [PRL99,142002(2007)], 670 fb⁻¹

[PRL101,172001(2008)], 695 fb⁻¹

Observation of $e+e-\rightarrow \pi+\pi-h_c$

- 3.3 fb⁻¹ data at 13 energy points from 3900 MeV to 4420 MeV
- $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow hadrons$

[16 exclusive decay modes, \sim 35% of the η_c decays]

[PRL111,242001 (2013)]

Comparison of cross section: $e^+e^- \rightarrow \pi^+\pi^-h_c$ and $\pi^+\pi^-J/\psi$

- $\sigma(e^+e^- \to \pi^+\pi^-h_c) \sim \sigma(e^+e^- \to \pi^+\pi^-J/\psi)$ but line shape different
- Local maximum ~ 4.23 GeV, broad structure at ~4.4 GeV?
- Hint for a vector ccg hybrid? [PRD78, 056003 (Guo); 094504 (Dudek)]

Observation of $e^+e^- \rightarrow \omega \chi_{c0}$

- Data samples at 9 energy points from 4210 MeV to 4420 MeV
- ω→π⁺π⁻π^o;
 χ_{co}→π⁺π⁻/K⁺K⁻
- Signal observed at 4230 MeV and 4260 MeV
- Simultaneous fit performed

Cross section peaks around 4230

B€SIII

Charged charmonium-like states

- ■Decay into a charmonium, thus contains c̄c
- Have electric charge, thus has two more light quarks
- •Could exist in $\pi^{\pm}J/\psi$, $\pi^{\pm}\psi(2S)$, $\pi^{\pm}h_c$, $\pi^{\pm}\chi_{cJ}$,...
- •Experimental search:
- ■BESIII/CLEO-c: e+e- $\rightarrow \pi^{\pm}$ exotics,...
- ■Belle/BaBar: $e+e-\rightarrow(\gamma_{ISR})\pi^{\pm}$ exotics,...
- ■Belle/BaBar/LHCb: B->K exotics,...

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$

[PRL110, 252001(2013)]

525 pb⁻¹ data at 4.260 GeV

B€SⅢ

Observation of Zc(3900)

BESIII: [PRL110, 252001(2013)]

 $M = 3899.0\pm3.6\pm4.9 \text{ MeV}$

 $\Gamma = 46\pm10\pm20 \text{ MeV}$

 307 ± 48 events

BELLE: [PRL110, 252002 (2013)]

 $M = 3894.5 \pm 6.6 \pm 4.5 \text{ MeV}$

 $\Gamma = 63\pm 24\pm 26 \text{ MeV}$

159 ± 49 events

[PLB727, 366-370(2013)]

586 pb⁻¹ data at 4.170 GeV

 $M = 3886 \pm 4 \pm 2 \text{ MeV}$

 $\Gamma = 37 \pm 4 \pm 8 \text{ MeV}$

 81 ± 16 events

CLEOc data

Neutral partner of Zc(3900)

- 2.8fb⁻¹ data at 10 energy points from 4260~4420 MeV
- Z_c(3900)⁰ is observed clearly at E_{cm} = 4230, 4260, 4360MeV
- BESIII preliminary results :
 - M= 3894.8 \pm 2.3 MeV, Γ = 29.6 \pm 8.2 MeV
 - Significance = 10.4 σ
- $R(Z_c^0/\pi^0\pi^0J/\psi)=N(Z_c^0(3900))/N(\pi^0\pi^0J/\psi)$, E_{cm} dependence

Neutral isospin partner, Z_c(3900)⁰ observed

$e^{+}e^{-} \to \pi^{+}(D^{*}\bar{D})^{-} + c.c.$

525 pb⁻¹ data at 4.260 GeV

Strategy:

[PRL112, 022001 (2014)]

reconstruct D⁰→ K⁻π⁺/D⁺→ K⁻π⁺π⁺; reconstruct "bachelor" π; require D* in the missing mass using kinematic fit; look at the recoil side of π

M =
$$3883.9\pm1.5\pm4.2$$
 MeV
 Γ = $24.8\pm3.3\pm11.0$ MeV
 $\sigma \times B$ 85.3 $\pm6.6\pm22.0$ pb

Assuming $Z_c(3885)$ is $Z_c(3900)$

$$\frac{\Gamma(Z_c(3885)->D\overline{D}^*)}{\Gamma(Z_c(3900)->\pi J/\psi)} = 6.2\pm 1.1\pm 2.7$$

Large non-DD coupling

$e^{+}e^{-} \to \pi^{+}(D^{*}\overline{D})^{-} + c.c.$

[PRL112, 022001 (2014)]

- $cos\theta_{\pi}$:
 - bachelor pion's pole angle (relative to beam direction) in the CMS

- o-: P-wave, with $J_Z = \pm 1$ $\rightarrow \sin^2 \theta_{\pi}$
- O+: parity conservation
- 1⁻: P-wave, $1+\cos^2\theta_{\pi}$
- ¹+: S-wave/D-wave,
 D-wave small contribution
 →flat distribution

fits favor 1+ assumption

Observation of Zc(4020) in $\pi^+\pi^-h_c$

[PRL111, 242001 (2013)]

- Simultaneous fit to 4.23 /4.26/
 4.36 GeV data
- M= 4022.9±0.8±2.7 MeV;
- Γ= 7.9±2.7±2.6 MeV

 $Z_c(4020)$: 8.9 σ ; $Z_c(3900)$: 2.1 σ

Neutral partner of Zc(4020) in $\pi^0\pi^0h_c^{BCSIII}$

- Simultaneous fit to 4.23 /4.26/4.36 GeV data
- ■Width fixed to charged Zc(4020)
- Interference neglect
- ■M= 4023.6±2.2±3.9 MeV;

 $[M = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}]$

$Z_c(4025)$ in D*D* mode

Strategy:

827 pb⁻¹ data at 4.260 GeV

[PRL112, 132001 (2014)]

- Look at π[±] recoil mass
- Events excess phase space could be described by a state decay into D*D*
- N= 401±47
- M= 4026.3±2.6±3.7 MeV;
 Γ= 24.8±5.6±7.7 MeV

Assuming $Z_c(4025)$ is $Z_c(4020)$

$$\frac{\Gamma(Z_c(4025)->D^*\overline{D}^*)}{\Gamma(Z_c(4020)->\pi h_c)} = 12 \pm 5$$

Summary Zc mass and widths

State	Mass (MeV/c²)	Width (MeV)	Note
	3899.0±3.6±4.9	46±10±20	BESIII
	3894.5±6.6±4.5	63±24±26	Belle
Z _c (3900) ±	3886±4±2	37±4±8	CLEO-c*
	$3883.9 \pm 1.5 \pm 4.2$	24.8±3.3±11.0	BESIII
	3888.7±2.7	34.7±6.6	<u>Average</u>
	4022.9±0.8±2.7	$7.9 \pm 2.7 \pm 2.6$	$\pi^{\pm}h_{c}$
Z _c (4020) ±,0	4026.3±2.6±2.7	24.8±5.6±7.7	D*D*
BESIII	4023.6±2.3±3.9	-	$\pi^{\rm o} h_{\rm c}$
	4023.8±2.1	10.2±3.5	<u>Average</u>

More excited states?

Zc(4430) Belle, LHCb

PRD88, 074026 (2013) arXiv1404.1903

Summary

• e+e- $\rightarrow \pi$ + π -h_c and $\omega \chi_{co}$ are observed, and cross sections are measured by BESIII

Around 4.2 GeV, $\pi+\pi-h_c$ mode has large production of cross section, and different line shape observed at $\pi+\pi-h_c$ hc process, makes situation complicate

- X(3872) are observed in Y(4260) $\rightarrow \gamma$ X(3872)
- Charged Zc states:
 - Confirmed exotic state with at least four quarks,
 Zc(3900), at BESIII, Belle and CLEOc
 - Observation of charged and neutral Zc' at BESIII
- More results will come soon