Charmonium Spectroscopy and $Z_c^{\pm}(3900)$

Workshop on Fau-Charm at High Luminosity Isola d'Elba May 26 - 31, 2013

> Frederick A. Harris BESIII University of Hawaii

OUTLINE

- Introduction
- Precision charmonium measurements
 - η_c
 - η_c(2S)

 - h_c $\Psi' \rightarrow \pi^0/\eta J/\Psi$
 - $\begin{array}{ll} \bullet & X_{c0,2} \rightarrow \gamma \gamma \\ \bullet & \Psi' \rightarrow \gamma \gamma J / \Psi \end{array}$
- XYZ physics
 - Y(4260)
 - Z_c(3900)
- Future
- Summary

Charmonium Spectroscopy

- Charmonium is one of the simplest bound states in QCD.
 Like positronium in QED.
- Importance of charmonium:
 - Provides detailed information on QCD in the perturbative and non-perturbative regions.
 - Provides laboratory for precision tests of lattice QCD and effective field theory calculations.
 - Provides clean laboratory for studies of hadronic decays and searches for exotic states, hybrids, glueballs, and rare decays.
 - Provides laboratory for study of baryons and excitedbaryons (I = $\frac{1}{2}$ filter).
 - Understanding necessary to understand XYZ states.

In following,
$$\Psi' = \Psi(2S)$$

Charmonium Spectroscopy

Apology:

In the following I will cover mostly results from BESIII and only a small subset of those.

Important Processes

 \overline{R}

- e⁺e⁻ annihilation
- B decay
- ISR
 - e⁺e⁻ radiate one or more photons.
 - Measure σ over range of energies.
- 2 photon
 - even spin mesons
 - anti glueball filter.

High luminosities at B factories allow use of ISR and 2 photon processes.

5/15/2013

Workshop on Tau-Charm at High Luminosity

e⁺

Charmonium spectrum below open charm

Only J/ψ and ψ' produced directly in e^+e^- collisions, but states below ψ' produced through radiative and hadronic transitions.

5/15/2013

S wave spin singlet ground state of charmonium.

Known for long time.

Precise measurement of η_c mass provides information on the hyperfine (Δ M(1S)) splitting of η_c and J/ ψ . Also important to check lattice QCD calculations.

η_c(1s)

But: mass and width poorly determined.

- For $J/\Psi, \Psi' \rightarrow \gamma \eta_c$, average = 2978.5 ± 1.3 MeV/c².
- For $\gamma\gamma$ or $p\bar{p}$ production, average = 2983.3 ± 1.0 MeV/c². 3 σ difference. Discrepancy pointed out by CLEOc.

5/15/2013

η_c(1s)

CLEOc: J/ Ψ and $\Psi' \rightarrow \gamma \eta_c$

- Investigated with 24.5 M Ψ' decays. Used 12 η_c exclusive decays to determine γ line shape in $J/\Psi \to \gamma \eta_c$.
- Shape can not be explained by simple BW + resolution.
- Used empirical form.
- May explain 3σ difference with mass from γγ fusion and ppbar annihilation.

CLEO, PRL 102, 011801 (2009)

- **BESIII**: Studied $\Psi' \rightarrow \gamma \eta_c$, η_c exclusive decays.
- Did simultaneous fit with distorted lineshape (hindered M1) with significant interference (15 σ) between η_c and non- η_c decays.

Mass and Width of η_c

- mass = 2984.3 \pm 0.6_{stat} \pm 0.6_{syst} MeV/c²
- width = $32.0 \pm 1.2_{\text{stat}} \pm 1.0_{\text{syst}}$ MeV
- X²/ndf = 283/274 for fit.

BESIII, PRL 108, 222002 (2012); arXiv:1111.0398

- Now consistent with $\gamma\gamma$ and p-pbar production.
- Currently BESIII is the most precise measurement
- $\Delta M_{hf} (1S)_{cc-bar} = M(J/\Psi) M(\eta_c) = 112.6 \pm 0.8 \text{ MeV/c}^2$.
- In good agreement with recent LQCD calculations: $\Delta M_{hf} (1S)_{cc-bar} 108 117 \text{ MeV/c}^2$.

LQCD theorists much happier.

- T. Burch et al., PRD 81, 034508 (2010)
- T. Kawanai and S. Sasaki, PRD 85, 091503 (2012)
- D. Mohler, arXiv:1209.5790 (2012)
- C. Davies et al., arXiv:1301.7203 (2013)

η_c(25)

- First "observation" by Crystal Ball in 1982 (M=3.592GeV, from $\psi'\!\!\to\!\!\gamma$ X) never confirmed.
- First observed by Belle in $B^{\pm} \rightarrow K^{\pm} \eta_{c}(2S), \eta_{c}(2S) \rightarrow K_{S}$ $K^{\pm} \pi^{T}$.
- Published results (PDG2012): All B-factory/CLEO!
 n_r(25) MASS

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT
3638.9±1.3 OUR A	VERAGE			
$3638.5 \pm 1.5 \pm 0.8$	624	¹ DEL-AMO-SA1	1M BABR	$\gamma \gamma \rightarrow K^0_S K^{\pm} \pi^{\mp}$
$3640.5 \pm 3.2 \pm 2.5$	1201	¹ DEL-AMO-SA1	1M BABR	$\gamma \gamma \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$
$3636.1^{+3.9}_{-4.2}^{+0.7}_{-2.0}$	128	² VINOKUROVA 1	1 BELL	$B^\pm\to~K^\pm(K^0_SK^\pm\pi^\mp)$
3626 ± 5 ± 6	311	³ ABE 0	7 BELL	$e^+ e^- \rightarrow J/\psi(c \overline{c})$
$3645.0 \pm 5.5 {+4.9 \\ -7.8}$	121 ± 27	AUBERT 0	5c BABR	$e^+ e^- \rightarrow J/\psi c \overline{c}$
$3642.9 \pm 3.1 \pm 1.5$	61	ASNER 0	4 CLEO	$\gamma \gamma \rightarrow \eta_c \rightarrow K^0_S K^{\pm} \pi^{\mp}$

$\eta_c(2S)$ WIDTH

VALUE (MeV)	<u>CL% EVTS</u>	DOCUMENT I	D	TECN	COMMENT
10 ± 4 OUR	AVERAGE				
$13.4\pm~4.6\pm3.2$	624	⁸ DEL-AMO-9	5A11M	BABR	$\gamma\gamma \rightarrow K^0_S K^{\pm} \pi^{\mp}$
6.6^+ $8.4+2.6$ - $5.1-0.9$	128	⁹ VINOKURO	VA 11	BELL	$\overset{B^{\pm}}{\overset{\rightarrow}{\kappa^{\pm}}}_{\kappa^{\pm}(\kappa^{0}_{S}\kappa^{\pm}\pi^{\mp})}$
6.3±12.4±4.0	61	ASNER	04	CLEO	$\begin{array}{ccc} \gamma\gamma \rightarrow & \eta_{c} \rightarrow \\ & \kappa_{s}^{0} \kappa^{\pm} \pi^{\mp} \end{array}$

5/15/2013

η_c(2S) $\eta_c(2S)$ DECAY MODES

		Mode	Fraction (Γ_i/Γ)	
	Г ₁	hadrons KK	not seen $(1,0+1,2)$ %	
	Γ ₃	$2\pi^+ 2\pi^-$	not seen	
	Г ₄ Г ₅	$^{\rho}_{3\pi^+3\pi^-}^{\rho}$	< 3.1 × 10 ⁻³ UL BESIII not seen PRD 84,	
PDG2012	Г ₆ Г ₇	$K^+ K^- \pi^+ \pi^- K^{*0} \overline{K}^{*0}$	not seen 091102 (20 < 5.3 × 10 ⁻³ ← UL BESTIT	11)
1 OOLOIL	Г ₈ Го	$K^+ K^- \pi^+ \pi^- \pi^0 K^+ K^- 2\pi^+ 2\pi^-$	(1.4±1.0) %	
	Γ ₁₀	$K_{S}^{0}K^{-}2\pi^{+}\pi^{-}$ + c.c.	not seen	
	Γ_{11} Γ_{12}	$2\kappa + 2\kappa = \phi \phi$	not seen < 2 × 10 ⁻³ ◆ UL BESIII	
	Г ₁₃ Г ₁₄	Ρ ΥΥ	$< 5 \times 10^{-4}$	
	Г ₁₅ Г ₁₆	$\pi^+ \pi^- \eta$ $\pi^+ \pi^- \eta'$	not seen not seen	
	Γ ₁₇	$K^+K^-\eta$	not seen	
	18	$\pi^{\dagger}\pi^{\dagger}\eta_{c}(13)$	not seen	

5/15/2013

- •Simultaneous fit of $\eta_c(2S)$ and χ_{cJ}
- • $\eta_c(2S)$ signal: modified BW (M1).
- $N(\eta_c(2S)) = 127 \pm 18$
- statistical significance 11σ
- $\chi^2/ndf=0.9$

5/15/2013

$ψ' \rightarrow \gamma \eta_c (2S) \rightarrow \gamma K K \pi$

BESIII discovers this transition after 18 years of searching.

5/15/2013

 $\begin{array}{l} \mathsf{M}(\eta_{c}(2\mathsf{S})) = 3646.9 \pm 1.6 \pm 3.6 \text{ MeV/c}^{2} \\ \Gamma(\eta_{c}(2\mathsf{S})) = 9.9 \pm 4.8 \pm 2.9 \text{ MeV} \\ \mathsf{B}(\psi' \rightarrow \gamma \eta_{c}(2\mathsf{S})) \times \mathsf{B}(\eta_{c}(2\mathsf{S}) \rightarrow \mathsf{K}_{\mathsf{S}}\mathsf{K}^{\pm}\pi^{\mp}\pi^{+}\pi^{-}) = \\ 7.03 \pm 2.10 \pm 0.70) \times 10^{-6} \end{array}$

- $\Delta M_{hf}(25) = M(\Psi(3686)) M(\eta_c(25)) = 47.2 \pm 1.3 \text{ MeV/c}^2 [PDG2012]$
- LQCD calculation: ΔM_{hf} (1S)_{cc-bar} 57.9 ± 2.0 MeV/c².
 D. Mohler, CHARM2012, arXiv:1209.5790 (2012).
 5/15/2013 Workshop on Tau-Charm at High Luminosity

 $h_c({}^1P_1)$ $M(h_c)$ important to learn about hyperfine
interaction of P wave states.Hyperfine or triplet-singlet splitting
determined by spin-spin term in QCDPRD 72, 09200
3.8

potential models. Expected to be ~ 0 for P wave states.

Not in PDG summary table until 2008.

CLEOc used $\psi' {\rightarrow} \pi^o \ h_c, \ h_c {\rightarrow} \gamma \eta_c \ and obtained:$

 $\begin{array}{l} \mathsf{M}(\mathsf{h}_{\mathcal{C}})_{\mathsf{AVG}} = 3525.20 \pm 0.18 \pm 0.12 \ \mathsf{M}eV/c^2 \\ (\mathsf{B}_1 \times \mathsf{B}_2)_{\mathsf{AVG}} = (4.16 \pm 0.30 \pm 0.37) \times 10^{-4} \end{array}$

PRL 101, 182003 (2008).

 $\Delta M_{hf}(1P) = \langle M(^{3}P_{J}) \rangle - M(^{1}P_{1}) = +0.08 \pm 0.18 \pm 0.12 \text{ MeV},$ where $\langle M(^{3}P_{J}) \rangle = \text{spin}$ weighted centroid of $^{3}P_{J}$ states

 $= [M(\chi_{cJ}) + 3^*M(\chi_{cJ}) + 5^*M(\chi_{cJ})]/9$ Consistent with lowest order expectation of 0. 5/15/2013 Workshop on Tau-Charm at High Luminosity

Methods to study $h_{\rm c}$

Only detect π^0 : inclusive. Rate ~ B($\psi' \rightarrow \pi^o h_c$) BESIII, PRL 104, 132002 (2010)

Detect π^0 and γ : E₁ tagged. Rate ~ B($\psi' \rightarrow \pi^0 h_c$) x B($h_c \rightarrow \gamma \eta_c$) BESIII, PRL 104, 132002 (2010)

Detect π^0 , γ , and η_c decay: exclusive. Rate ~ B($\psi' \rightarrow \pi^o h_c$) x B($h_c \rightarrow \gamma \eta_c$) x B($\eta_c \rightarrow X$)

Exclusive η_c decays

5/15/2013

$\psi' \rightarrow \pi {}^{0}h_{c}, h_{c} \rightarrow \gamma \eta_{c}, \eta_{c}$ exclusive decays

PRD 86, 092009 (2012)

Currently the most precise measurements

5/15/2013

 MeV/c^2

h_c: analysis summary

	BESIII Exclusive	BESIII Tagged	CLEOc
$Br(\psi' \rightarrow \pi^0 h_c) \times$		$4.58 \pm 0.40 \pm 0.50$	$4.16 \pm 0.30 \pm 0.37$
Br(h _c →γη _c) [10 ⁻⁴]			
M [MeV/c²]	3525.31±0.11±0.14	3525.40 ±0.13±0.18	3525.20 ±0.18±0.12
Г [MeV]	0.70±0.28±0.22	$0.73 \pm 0.45 \pm 0.28$	
$\Delta M_{hf}(1P) [MeV/c^2]$	-0.01±0.11±0.15	0.10±0.13±0.18	0.08±0.18±0.12
	BESIII	theoret	tical predictions
Br(ψ'→ π ⁰ h _c) [10 ⁻⁴]	8.4±1.3±1.0	0 4 - 13 K	uang
Br(h _c →γη _c) [%]	54.3±6.7±5.2	2 41 (NRG	(CD) Kuang
		88 (PQC	D) Kuang
		38 Godf	rey, Rosner
Г [MeV]	0.70±0.28±0).22 1.1 (NRG	QCD) Kuang
	0.73±0.45±	±0.28 0.51 (PG	(CD) Kuang
		0.601 \pm	0.055†

Theoretical predictions: Kuang, PRD65, 094024(2002), Godfrey & Rosner, PRD 66, 014012 (2002) [†]Lattice: Duek, *et al,* PRD 73, 074507 (2006). 5/15/2013 Workshop on Tau-Charm at High Luminosity

CLEO, PRL 101, 182003 (2008) BESIII, PRL 104, 132002 (2010)

BESIII, PRD 86, 092009 (2012)

From simultaneous fit to mass spectra. $\chi^2/d.o.f. = 1.5$

	From $h_c \rightarrow \gamma \eta_c$	From $\Psi' \rightarrow \gamma \eta_c$
M(⊓ _c) [MeV/c ²]	2984.49±1.16±0.52	2984.3 ±0.06±0.06
Γ(η _c) [MeV]	36.4±3.2±1.7	32.0±1.2±1.7

Lineshape is much less distorted than for J/ψ , $\psi' \rightarrow \gamma \eta_c$; the non-resonant interfering background is small. This channel much better for determining the η_c resonance parameters.

5/15/2013 BESIII Collaboration, PRD 86, 092009 (2012)

B($\eta_c \rightarrow X_i$) from $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

 $\begin{array}{l} B_1(\Psi' \to \ \pi^0 h_c) \ x \ B_2(h_c \to \gamma \eta_c) \ x \ B_3(\eta_c \to X_i) \\ \text{The third errors in B are the systematic errors due to uncertainty of} \\ B_2(h_c \to \gamma \eta_c) \ x \ B_3(\eta_c \to X_i). \end{array}$

X _i	$\mathcal{B}_1 imes \mathcal{B}_2 imes \mathcal{B}_3 (imes 10^{-6})$	\mathcal{B}_3 (%)	\mathcal{B}_3 in PDG (%)
pp	$0.65 \pm 0.19 \pm 0.10$	$0.15 \pm 0.04 \pm 0.02 \pm 0.01$	0.141 ± 0.017
$\pi^+\pi^-\pi^+\pi^-$	$7.51 \pm 0.85 \pm 1.11$	$1.72 \pm 0.19 \pm 0.25 \pm 0.17$	0.86 ± 0.13
$K^+K^-K^+K^-$	$0.94 \pm 0.37 \pm 0.14$	$0.22 \pm 0.08 \pm 0.03 \pm 0.02$	0.134 ± 0.032
$K^{+}K^{-}\pi^{+}\pi^{-}$	$4.16 \pm 0.76 \pm 0.59$	$0.95 \pm 0.17 \pm 0.13 \pm 0.09$	0.61 ± 0.12
$p\bar{p}\pi^{+}\pi^{-}$	$2.30 \pm 0.65 \pm 0.36$	$0.53 \pm 0.15 \pm 0.08 \pm 0.05$	<1.2 (at 90% C.L.)
$\pi^+\pi^-\pi^+\pi^-\pi^+\pi^-$	$8.82 \pm 1.57 \pm 1.59$	$2.02 \pm 0.36 \pm 0.36 \pm 0.19$	1.5 ± 0.50
$K^+K^-\pi^+\pi^-\pi^-\pi^-$	$3.60 \pm 1.71 \pm 0.64$	$0.83 \pm 0.39 \pm 0.15 \pm 0.08$	0.71 ± 0.29
$K^+K^-\pi^0$	$4.54 \pm 0.76 \pm 0.48$	$1.04 \pm 0.17 \pm 0.11 \pm 0.10$	1.2 ± 0.1
$p \bar{p} \pi^0$	$1.53 \pm 0.49 \pm 0.23$	$0.35 \pm 0.11 \pm 0.05 \pm 0.03$	
$K_S^0 K^{\pm} \pi^{\mp}$	$11.35 \pm 1.25 \pm 1.50$	$2.60 \pm 0.29 \pm 0.34 \pm 0.25$	2.4 ± 0.2
$K_S^0 K^{\pm} \pi^{\mp} \pi^{\pm} \pi^{\mp}$	$12.01 \pm 2.22 \pm 2.04$	$2.75 \pm 0.51 \pm 0.47 \pm 0.27$	
$\pi^+\pi^-\eta$	$7.22 \pm 1.47 \pm 1.11$	$1.66 \pm 0.34 \pm 0.26 \pm 0.16$	4.9 ± 1.8
$K^+K^-\eta$	$2.11 \pm 1.01 \pm 0.32$	$0.48 \pm 0.23 \pm 0.07 \pm 0.05$	<1.5 (at 90% C.L.)
$\pi^+\pi^-\pi^+\pi^-\eta$	$19.17 \pm 3.77 \pm 3.72$	$4.40 \pm 0.86 \pm 0.85 \pm 0.42$	
$\pi^+\pi^-\pi^0\pi^0$	$20.31 \pm 2.20 \pm 3.33$	$4.66 \pm 0.50 \pm 0.76 \pm 0.45$	
$\pi^{+}\pi^{-}\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$75.13 \pm 7.42 \pm 9.99$	$17.23 \pm 1.70 \pm 2.29 \pm 1.66$	

Some branching ratios measured for first time.

5/15/2013 BESIII Collaboration, PRD 86, 092009 (2012)

Hadronic transitions and 2y transitions

Hadronic transitions $\Psi' \rightarrow \eta J/\Psi$, $\pi^0 J/\Psi$

 $\Psi' \rightarrow \pi^0 J/\Psi$ - isospin violating decay R = B($\Psi' \rightarrow \pi^0 J/\Psi$)/B($\Psi' \rightarrow \eta J/\Psi$) suggested as way to measure m_u/m_d. [Phys. Lett. 95B, 99 (1980)] Theoretical predictions:

R = 1.6% using QCD multipole expansion and axial anomaly [Phys Rep. 194, 1 (1990)]

 $R = (11 \pm 6)\%$ using charmed meson loops in chiral perturbation theory [PRL 103, 082003 (2009); 104, 10990 (2010)]

	BESIII	PDG2012
B ($\Psi' \rightarrow \pi^0 J/\Psi$) (×10 ⁻³)	1.26±0.02±0.03	1.30±0.10
$B(\Psi' \rightarrow \eta J/\Psi)$ (x10 ⁻³)	33.75±0.17±0.86	32.8+0.7
R (%)	3.74±0.06±0.04	3.96±0.42

Branching ratios will place constraints on meson loop contributions. BESIII Collaboration, PRD 86, 092008 (2012)

5/15/2013

 $\rightarrow \gamma \gamma$

 \approx

R = 0.09 to 0.36 with high order corrections [PRD 54, 2075 (1996)]

Quantity	X _{c0}	X _{c2}	
$B_1 \times B_2 \times 10^5$	2.17±0.17±0.12	2.81±0.17±0.15	$B_1 = B(\Psi' \rightarrow \gamma X_{c0,2})$
$B_2 \times 10^4$	2.24±0.19±0.12±0.08	3.21±0.18±0.17±0.13	$B_2 = B(X_{c0,2} \rightarrow \gamma \gamma)$
$\Gamma_{\gamma\gamma}$ (keV)	2.33±0.20±0.13±0.17	$0.63 \pm 0.04 \pm 0.04 \pm 0.04$	$R = I_{\gamma\gamma}(X_{c2})/I_{\gamma\gamma}(X_{c0})$
R	0.271±0.029±		
			RESTTT DDD 85

R is consistent with lowest order prediction.

5/15/2013

positronium.

Workshop on Tau-Charm at High Luminosity

112008 (2012)

First evidence for $\Psi' \to \gamma \gamma J/\Psi$

May be sensitive to charm hadronic loop effects. [PRD 83, 054028 (2011)]

5/15/2013 CLEO: $B(\Psi' \rightarrow \gamma \gamma J/\Psi) < 1 \times 10^{-4}$ [PRD 78, 011102 (2008)]

XYZ States and Y(4260)

ANALY SALE Y

" ALENTRATION DUTING

XYZ States

XYZ States (EPJ C71, 1534 (2011))

	State	m (MeV)	Γ (MeV)	JPC	Process (mode)	Experiment (#\alpha)	Year	Status
	X(3872)	3871.52 ± 0.20	1.3 ± 0.6	1++/2-+	$B\to K(\pi^+\pi^-J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	ОК
			(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \cdots$	CDF [88–90] (np), DØ [91] (5.2)		
					$B \to K(\omega J/\psi)$	Beile [92] (4.3), BABAR [93] (4.0)		
					$B \rightarrow K(D^{*0}\bar{D^0})$	Belle [94, 95] (6.4), BABAR [96] (4.9)		
					$B \to K(\gamma J/\psi)$	Belle [92] (4.0), BABAR [97, 98] (3.6)		
					$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
	X(3915)	3915.6 ± 3.1	28 ± 10	0/2?+	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
					$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
	X(3940)	3942 ⁺⁹	37^{+27}_{-17}	??+	$e^+e^-\to J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
					$e^+e^- \rightarrow J/\psi \; (\ldots)$	Beile [54] (5.0)		
	G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
	Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$	Beile [104] (7.4)	2007	NC!
	$Z_1(4050)^+$	4051_{-43}^{+24}	82 ⁺⁵¹ 82 ⁻⁵⁵	?	$B\to K(\pi^+\chi_{c1}(1P))$	Beile [105] (5.0)	2008	NC!
	Y(4140)	4143.4 ± 3.0	15 ⁺¹¹ 7	??+	$B\to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
	X(4160)	4156+29	139 ⁺¹¹³	??+	$e^+e^-\to J/\psi(D\bar{D}^*)$	Beile [103] (5.5)	2007	NC!
	$Z_2(4250)^+$	4248 ⁺¹⁸⁵	177^{+321}_{-72}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Beile [105] (5.0)	2008	NC!
	Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
						CLEO [110] (5.4)		
						Belle [104] (15)		
					$e^+e^- \to (\pi^+\pi^-J/\psi)$	CLEO [111] (11)		
					$e^+e^- \to (\pi^0\pi^0 J/\psi)$	CLEO [111] (5.1)		
	Y(4274)	4274.4 ^{+8.4} -6.7	32^{+22}_{-15}	??+	$B\to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
	X(4350)	4350.6 ^{+4.6} -5.1	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- \rightarrow e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
\longrightarrow	Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma (\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
	Z(4430) ⁺	4443^{+24}_{-18}	107 ⁺¹¹³	?	$B \to K(\pi^+\psi(2S))$	Beile [115, 116] (6.4)	2007	NC!
	X(4630)	4634+9	92 ⁺⁴¹ -32	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Beile [25] (8.2)	2007	NC!
	Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
5/15/20	$Y_b(10888)$	10888.4 ± 3.0	30.7+8.9	1	$e^+e^- \rightarrow (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

32

5/15/2013

Y(4260)

New XYZ era has generated many, many theoretical papers. Some theoretical ideas for Y(4260): DD* bound state [NPA815, 53 (2009)]. $J/\Psi f_0$ bound state (with KK $\rightarrow \pi\pi$) [PRD80, 094012 (2009)]. Tetraquarks (or two diquarks) [PRD72, 031502 (2005)]. Hadrocharmonium [PLB666, 215 (2008)]. Hybrid charmonium [PLB628, 215 (2005), PRD78, 094505 (2008), PLB625, 212 (2005)].

On Dec. 14, 2012, BESIII began running with a CM energy of 4260 MeV. Also took data at 4360

MeV.

Y(4260)

Select $e^+e^- \rightarrow \pi^+\pi^- J/\Psi$, $J/\Psi \rightarrow I^+I^-$ events.

1477 events found.

Born cross section, (62.9 ± 1.9 ± 3.7) pb, consistent with production of $\gamma(4260)$.

A structure around 3.9 GeV/c is observed in the π^{\pm} J/Ψ mass spectrum. If interpreted as a particle, it carries charge and couples to charmonium.

+ data

Sideband

0.4

0.6

08

 $M(\pi^+\pi)$ (GeV/c²)

MC: σ, f(980), NR

5/15/2013

Workshop on Tau-Charm at High Luminosity

1.2

1.4

Plot maximimum of $M(\pi^+J/\Psi)$ and $M(\pi^-J/\Psi)$ for each event. Fit with BW convolved with Gaussian resolution function; neglect interference with background.

Structure has charge and couples to charmonium. Suggestive of a state containing more than just a C and C-bar quark.

5/15/2013

Studies at B factories found unconfirmed/controversial structures in $\pi^{\pm}\Psi(3686)$, $Z^{\pm}(4430)$, [Belle, PRL 100, 142001 (2008); BaBar, PRD 79, 112001 (2009)] and $\pi^{\pm}X_{c1}$, Z_{1}^{\pm} (4050) and $Z_{2}^{\pm}(4250)$, [Belle, PRD 78, 072004 (2008); BaBar, PRD 85, 052003 (2012)] systems.

Luckily, the $Z_c(3900)$ has already been confirmed by Belle [arXiv:1304.0121] in ISR Y(4260) production and by Kam Seth [arXiv:1304.3036] using 586 pb⁻¹ of CLEO data taken at a CM energy of 4170 MeV [$\Psi(4170)$]. Seth also sees a peak in π^0 J/ Ψ , a neutral $Z_c(3900)$.

		√s (GeV)	σ(ee→ππ J/Ψ), pb	N(Z _c)	M(Z _c) MeV/c ²	Γ(Z _c) MeV	R %
BESIII	π⁺π⁻	4.26	62.9 ± 1.9	307	3899 ± 6	46 ± 22	22 ± 3
Belle	π⁺π⁻	3.8 - 5.5		159	3895 ± 8	63 ± 35	29 ± 9
Seth	π⁺π⁻	4.17	8.6 ± 0.7	81	3885 ± 5	34 ± 13	35 ± 11
Seth	π ⁰ π ⁰	4.17	5.7 ± 0.8	17	3907 ± 12	34 ± 29	25 ± 15

 $\mathsf{R=B}(\mathsf{Y}(e^+e^- \to Z_c\pi)^{\bullet}\mathsf{B}(Z_c \to \pi J/\Psi)/\mathsf{B}(e^+e^- \to \pi\pi J/\Psi)$

- Measurements agree well.
- Seth not at peak of Y(4260), but at peak of $2^{3}D_{1}$ state of charmonium, $E_{CM} = 4170$ MeV. "Do not need to attribute unusual properties to initial state of Y(4260)".

5/15/2013

- Belle also measures cross section in latest work.
- Belle has claimed two resonances in this region: Y(4260) and Y(4008); Belle, PRL99, 182004 (2007).
- However BaBar uses a different background description and does not confirm the Y(4008); BaBar, PRD86, 051102 (2012).
- Therefore situation at E_{CM} = 4170 GeV unclear.
- BESIII will be able to clarify and study many more decay modes of the Y(4260). Accumulating more data.

40

The nature of the $Z_c(3900)$?

From Spires April 21:

- 1. Tetraquarks
- arXiv:1110.1333, 1303.6857
- arXiv:1304.0345, 1304.1301

2. Hadronic molecules:

- arXiv:1303.6608, 1304.2882
- arXiv:1304.1850

3. Four quark state (1 or 2)• arXiv:1304.0380

The nature of the $Z_c(3900)$?

4. Meson loop

- arXiv:1303.6355
 arXiv:1304.4458
 5. Initial Single
 Pion Emission
 (ISPE) model
- arXiv:1208.2411
- arXiv:1303.6842
- arXiv:1304.5845

 $\psi(4040)$

6. ???

ISPE model

戸(*)0

5/15/2013

Workshop on Tau-Charm at High Luminosity

 J/ψ

BESIII data sets and future plans

BESIII data taking status & plan

	Previous data	BESIII present & future	Goal
J/ψ	BESII 58M	1.2 B 20*BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20*CLEOc	3B
ψ"	CLEO: 0.8 /fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm	CLEO: 0.6/fb @ ψ(4160)	<mark>2011: 0.4/fb @ ψ(4040)</mark> 2013: 1/fb@4260, 4360	5-10 /fb
R scan & Tau	BESII	2012: 12/pb@2.23,2.4,2.8,3.4 25/pb, τ scan 2013, 2014: @4260, R scan,	

Future

- BESIII has many years of data taking to reach goals. Considering now upgrades necessary to run until 2020.
- Goals may change due to competition from LHCb and Belle-II.
- Tau-charm energy region will continue to be interesting due to large variety of physics possible:
 - XYZ physics
 - Charmonium
 - Charm
 - Detailed R scan
 - precision tau mass
 - etc.

Summary

- Charmonium results have entered the precision era.
 - Mass and width problems of $\eta_c(1S)$ understood?
 - Have good handle now on $\eta_c(25)$ from Ψ' decays. More events will improve mass and width measurements.
- There is still much to do.
 - Improve measurements of charmonium below charm threshold to test/calibrate LQCD.
 - Understand states above charm threshold.
 - XYZ states and higher mass charmonium states need to be disentangled.

5/15/2013

BEPCII: a high luminosity double-ring collider

workshop on rau-enarmar righ Luminosiry

BESIII Detector

5/15/2013

BESIII Detector

Berylium beam pipe Small-celled, helium-based MDC: $|\cos \theta| < 0.83$ (all layers), < 0.93 (20 layers) $\sigma_p/p = 0.5$ % at 1 GeV/c; $\sigma_{dE/dx}/dE/dx = 6$ % at 1 GeV/c TOF (2 layers in barrel; 1 layer endcap) σ_{T} = 100 ps barrel; σ_{T} = 110 ps endcap CsI electromagnetic calorimeter crystal length: 28 cm (15 X_0) energy: 2.5%, space 0.6 cm at 1 GeV Superconducting Magnet - 1 T Muon Counter 9 layers of RPCs in barrel; 8 in endcap

For details, see talk by F. Harris at Meson2008.

5/15/2013

10 billion J/Ψ per year.

Experiments

