Strong phase in $D^0 \rightarrow K\pi$ decay and y_{CP} measurement at BESIII

Xiao-Rui Lu

(E-mail: xiaorui@ucas.ac.cn)

University of Chinese Academy of Sciences (UCAS)

(on behalf of the BESIII collaboration)

List of Contents:

- Introduction
- BEPCII/BESIII experiment
- Strong phase in $D^0 \rightarrow K\pi$ decay
- *y_{CP}* measurement
- Summary

Introduction

The mixing parameters describes the magnitude of DDbar mixing

$$x = 2\frac{M_1 - M_2}{\Gamma_1 + \Gamma_2}, \qquad y = \frac{\Gamma_1 - \Gamma_2}{\Gamma_1 + \Gamma_2}$$

where $M_{1,2}$ and $\Gamma_{1,2}$ are the masses and widths of the neutral D meson mass eigenstates.

- ✓ DDbar mixing is highly suppressed by the GIM mechanism and by the CKM matrix elements within the Standard Model
- ✓ Observation of DDbar mixing by LHCb
- ✓ Improving the constraints on the charm mixing parameters is important for testing the SM, such as long-distance effect
- ✓ In addition, strong phase is an important ingredient for (over-)constraining the CKM unitary triangle, which is an crucial for searching for new physics

Production at threshold

- **♦** Threshold production at 3.773 GeV
- **♦** Double Tag techniques: (partial-)reconstruct both *D* mesons
- **♦** Charm events at threshold are very clean and unique in studying *D* decays
- Quantum correlation of two D mesons
- Very clean environment with little to no non-DDbar background
- Lots of systematic uncertainties uncertainties cancel when applying double tag method

The decay rate of a correlated state

For a physical process producing $D^0 \bar{D}^0$ such as

$$e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D}^0$$

The D⁰ D

pair will be a quantum-correlated state

The quantum number of $\psi(3770)$ is $J^{PC}=1^{--}$

∴ The C number of \overline{D}^0 pair in this process is C = -

For a correlated state with C = -

$$\psi_{-} = \frac{1}{\sqrt{2}} (\left| D^{0} \right\rangle \left| \overline{D}^{0} \right\rangle - \left| \overline{D}^{0} \right\rangle \left| D^{0} \right\rangle)$$

$$\hat{C} |D^{0}\rangle = |\overline{D}^{0}\rangle$$

$$\hat{C} |\overline{D}^{0}\rangle = |D^{0}\rangle$$

Taking advantage the quantum coherence of DDbar pairs, BESIII can study the charm physics in an unique way

- strong phase
- mixing parameters
- direct CP violation

The BESIII detector

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Collected data samples at BESIII

	Previous data	BESIII now	Goal
J/ψ	BESII: 58 M	1.2 B 20*BESII	10 B
ψ(3686)	CLEO: 28 M	0.5 B 20*CLEO	3 B
Ψ(3770)	CLEO: 0.8 /fb	2.9 /fb 3.5*CLEO	20 /fb
Above open charm threshold	@4160MeV	2011: 0.5 /fb @ 4.009 GeV 2013: 1.9 /fb @ 4.26 GeV, 0.5 /fb @ 4.36 GeV and data for lineshape	5-10 /fb
R scan	BESII	2012: R @2.23,2.4,2.8,3.4 GeV 25 /pb tau mass	

- world's largest samples of on-threshold $\psi(3770)$ data and keep increasing in the future
- the aim is to have 20 /fb data

Implications of strong phase difference

Time-dependent $D^0 \rightarrow K\pi$ analysis: phase difference δ to relate (x', y') with (x, y).

$$x' = x_D \cos \delta_{K\pi} + y_D \sin \delta_{K\pi},$$

$$y' = y_D \cos \delta_{K\pi} - x_D \sin \delta_{K\pi}.$$

PRL 110, 101802 (2013)		
Parameter	Fit result	
	(10^{-3})	
R_D	3.52 ± 0.15	
y'	7.2 ± 2.4	
x'^2	-0.09 ± 0.13	

- CKM unitarity triangle γ/ϕ_3 extraction from $B^- \to D^0 K^-$

Strong phase in $D^0 \rightarrow K\pi$ decay: formalism

The strong phase difference $\delta_{K\pi}$ between the doubly Cabibbosuppressed (DCS) decay $\underline{D}^0 \rightarrow K^-\pi^+$ and the corresponding Cabibbo-favored (CF) $D^0 \rightarrow K^-\pi^+$ is denoted as

$$\frac{\langle K^- \pi^+ | \overline{D}{}^0 \rangle}{\langle K^- \pi^+ | D^0 \rangle} = -re^{-i\delta_{K\pi}}$$

Omitting the higher orders of the mixing parameters, and assuming *CP* conservation, we have

Omitting the higher orders of the nixing parameters, and assuming
$$A_f$$
 A_f A_f

$$\mathcal{A}_{CP\to K\pi} = \frac{\mathcal{B}_{D_2\to K^-\pi^+} - \mathcal{B}_{D_1\to K^-\pi^+}}{\mathcal{B}_{D_2\to K^-\pi^+} + \mathcal{B}_{D_1\to K^-\pi^+}}.$$

$$|D^0\rangle + |\overline{D}^0\rangle - |D^0\rangle - |\overline{D}^0\rangle$$

$$|D_1\rangle \equiv \frac{|D^0\rangle + |\overline{D}^0\rangle}{\sqrt{2}} |D_2\rangle \equiv \frac{|D^0\rangle - |\overline{D}^0\rangle}{\sqrt{2}}.$$

$$A_f \equiv \langle f|D^0\rangle, \ \overline{A}_f \equiv \langle f|\overline{D}^0\rangle$$

 $A_{CP+} \equiv \langle f|D_1\rangle$
 $A_{CP-} \equiv \langle f|D_2\rangle$

 $\sqrt{2}A_{CP-}$

Accessing strong phase $\delta_{K\pi}$ at threshold

We measure the strong phase difference using quantum correlated production of D-Dbar at the production threshold

based on 2.9 fb⁻¹ $\psi(3770)$ data

When we neglect *CPV*, *CP* of the two *D* mesons are anti-symmetric.

Type	Mode
Flavored	$K^{-}\pi^{+}, K^{+}\pi^{-}$
CP+	$K^+K^-, \pi^+\pi^-, K^0_S\pi^0\pi^0, \pi^0\pi^0, \rho^0\pi^0$
CP-	$K^0_S\pi^0,K^0_S\eta,K^0_S\omega$

To determine $\delta_{K\pi}$ in experiment

For the CP-eigenstates, yields of $D \rightarrow CP$ ST events will be

$$n_{CP\pm} = 2N_{D\overline{D}} \cdot \mathcal{B}_{CP\pm} \cdot \varepsilon_{CP\pm}.$$

The DT yields with $D \to CP$ and $D \to K\pi$ will be

$$n_{K\pi,CP\pm} = 2N_{D\overline{D}} \cdot \mathcal{B}_{CP\pm} \times \mathcal{B}_{D^{CP\mp}\to K\pi} \cdot \varepsilon_{K\pi,CP\pm}$$

Therefore, the branching fraction is

$$\mathcal{B}_{D^{CP\pm}\to K\pi} = \frac{n_{K\pi,CP\pm}}{n_{CP\pm}} \cdot \frac{\varepsilon_{CP\pm}}{\varepsilon_{K\pi,CP\pm}}.$$

Here, $\varepsilon_{CP\pm}/\varepsilon_{K\pi,CP\pm}$ cancels most systematic effects within the $D \to CP\pm$ decay mode.

Therefore, $A_{CP\to K\pi}$ can be obtained. With external inputs of the other parameters, we can obtain $\delta_{K\pi}$.

Single tags of CP modes

CP purity check of CP-tag modes

Mode	${\rm Yield}({\rm tag}\ KK$	efficiency(%)	Yield(tag $K_S^0 \pi^0$)	$\operatorname{efficiency}(\%)$
$K_S^0\pi^0\pi^0$	$8 \pm 3(*)$	11.80 ± 0.11	171 ± 14	7.20 ± 0.09
$ ho\pi^0$	$13 \pm 8(*)$	24.44 ± 0.16	299 ± 19	15.87 ± 0.16
$K_S^0\omega$	158 ± 13	11.02 ± 0.11	$7 \pm 3(*)$	6.77 ± 0.08

events with same-CP decays are consistent with 0

consider as systematic uncertainty

Double tags of (CP, $K\pi$) modes

Preliminary numerical results

Mode(CP)	ST Yield	Efficiency(%)
K^+K^-	$56156 \pm 261 \pm 61$	62.99 ± 0.26
$\pi^+\pi^-$	$20222 \pm 187 \pm 38$	65.58 ± 0.26
$K^0_S\pi^0\pi^0$	$25156 \pm 235 \pm 81$	16.46 ± 0.07
$\pi^0\pi^0$	$7610\pm156\pm56$	42.77 ± 0.21
$\rho\pi^0$	$41117 \pm 354 \pm 68$	36.22 ± 0.21
$K_S^0\pi^0$	$72710 \pm 291 \pm 34$	41.95 ± 0.21
$K^0_S\eta$	$10046 \pm 118 \pm 27$	35.46 ± 0.20
$K^0_S\omega$	$31422 \pm 215 \pm 49$	17.88 ± 0.10

Mode	DT Yield	efficiency(%)
$K^{\pm}\pi^{\mp}, K^{+}K^{-}$	$1669 \pm 42 \pm 4$	42.65 ± 0.21
$K^{\pm}\pi^{\mp},\pi^{+}\pi^{-}$	$608 \pm 25 \pm 3$	44.32 ± 0.21
$K^\pm\pi^\mp, K^0_S\pi^0\pi^0$	$800 \pm 30 \pm 4$	12.68 ± 0.13
$K^{\pm}\pi^{\mp},\pi^0\pi^0$	$212\pm15\pm0$	29.75 ± 0.18
$K^{\pm}\pi^{\mp}, \rho\pi^0$	$1240 \pm 36 \pm 1$	25.44 ± 0.16
$K^{\pm}\pi^{\mp}, K_S^0\pi^0$	$1688 \pm 42 \pm 4$	29.06 ± 0.17
$K^{\pm}\pi^{\mp}, K^0_S\eta$	$231\pm16\pm1$	24.76 ± 0.16
$K^{\pm}\pi^{\mp}, K_S^0\omega$	$725 \pm 28 \pm 1$	12.47 ± 0.06

Preliminary results of $\delta_{K\pi}$

We measure
$$\mathcal{A}_{\mathcal{CP}\to\mathcal{K}\pi} = (12.77 \pm 1.31(stat.)^{+0.33}_{-0.31}(sys.))\%$$

We have
$$2r\cos\delta_{K\pi} + y = (1 + R_{WS}) \cdot A_{CP \to K\pi}$$
,

With external inputs of the parameters in HFAG2013 and PDG,

$$R_{\rm D} = 3.47 \pm 0.06\%$$
, $y = 6.6 \pm 0.9\%$ $R_{\rm WS} = 3.80 \pm 0.05\%$

we obtain

$$\cos \delta_{K\pi} = 1.03 \pm 0.12 \pm 0.04 \pm 0.01$$

CLEO measurements of strong phase differences and coherence factors done with 0.8 fb⁻¹ at $\psi(3770)$. [CLEO, PRD 86 (2012) 112001]

without external inputs:
$$\cos \delta = 0.81^{+0.22+0.07}_{-0.18-0.05}$$
,

with external inputs:
$$\cos \delta = 1.15^{+0.19+0.00}_{-0.17-0.08}$$

BESIII result: the most precise measurement of $\delta_{K\pi}$ and compatible with the world average

Determination of the mixing parameter y_{CP}

For any final states of CP eigenstates, the decay rate is:

$$R_{CP^{\pm}} \propto |A_{CP^{\pm}}|^2 (1 \mp y_{CP})$$

where

$$y_{CP} = \frac{1}{2} [y \cos \phi(|\frac{q}{p}| + |\frac{p}{q}|) - x \sin \phi(|\frac{q}{p}| - |\frac{p}{q}|)]$$

Considering the process in which one *D* decays into CP eigenstates and the other D decays semileptonically, the decay rate is:

$$R_{l,CP^{\pm}} \propto |A_l|^2 |A_{CP^{\pm}}|^2$$

Neglecting terms to order y² or higher, we can derive

$$y_{CP} \approx \frac{1}{4} \left(\frac{R_{l;CP+}R_{CP-}}{R_{l;CP-}R_{CP+}} - \frac{R_{l;CP-}R_{CP+}}{R_{l;CP+}R_{CP-}} \right)$$

In the limit of no CPV,

$$y_{CP}=y$$

Measurement of y_{CP}: formalism

On experiments, we have

$$y_{CP} \approx \frac{1}{4} \left[\frac{\sum_{k,j} C_{CP+;l}^{k,j} \sum_{i} C_{CP-}^{i}}{\sum_{i,j} C_{CP-;l}^{i,j} \sum_{k} C_{CP+}^{k}} - \frac{\sum_{i,j} C_{CP-;l}^{i,j} \sum_{k} C_{CP+}^{k}}{\sum_{k,j} C_{CP+;l}^{k,j} \sum_{i} C_{CP-}^{i}} \right]$$

where the efficiency-corrected yields are denoted to be

$$C_{CP\pm}^{i} = \frac{N_{CP\pm}^{i}}{\epsilon_{CP\pm}^{i}}, \qquad C_{CP\pm;l}^{i,j} = \frac{N_{CP\pm;l}^{i,j}}{\epsilon_{CP\pm;l}^{ij}}$$
We define the ratio $B_{+} \equiv \frac{C_{CP+;l}}{C_{CP+}}$ and $B_{-} \equiv \frac{C_{CP-;l}}{C_{CP-}}$

then
$$y_{CP} = \frac{1}{4} \left[\frac{\ddot{B}_{+}}{\tilde{B}_{-}} - \frac{\ddot{B}_{-}}{\tilde{B}_{+}} \right]$$

 \tilde{B}_{\pm} is the average ratio over different *CP* modes by minimizing

$$\chi^2 = \sum \frac{(\tilde{B}_{\pm} - B_{\pm}^{\alpha})^2}{(\sigma_{\pm}^{\alpha})^2}$$

Measurement of y_{CP}: CP tag and flavor tag

We measure the y_{CP} using CP-tagged semi-leptonic D decays

based on 2.9 fb⁻¹ $\psi(3770)$ data

Type	Modes
$CP^+ \\ CP^- \\ l^{\pm}$	$K^{+}K^{-}, \pi^{+}\pi^{-}, K_{S}\pi^{0}\pi^{0}$ $K_{S}^{0}\pi^{0}, K_{S}^{0}\omega, K_{S}^{0}\eta$ $Ke\nu, K\mu\nu$

The observable can be:

$$U_{miss} = E_{miss} - c |\vec{p}_{miss}|$$

$$\vec{p}_{miss} = -\sqrt{E_{beam}^2 - m_D^2} \, \hat{p}_{D_{CP}} - \vec{p}_K - \vec{p}_l$$
 $E_{miss} = E_{beam} - E_K - E_l$

Semi-leptonic signal peaks at zero!

Single tags of CP modes

Double tags of *Kev* modes

- signal: MC shape convoluted with an asymmetric Gaussian
- background: a 1st-order polynomial function

Double tags of $K\mu\nu$ modes

- signal: MC shape convoluted with an asymmetric Gaussian
- backgrounds:
 - ✓ $K\pi\pi^0$: use control sample of $D \rightarrow K\pi\pi^0$ in data
 - ✓ *Kev*: fixed to MC shape and size
 - ✓ others: a 1st-order polynomial function

To evaluate $K\pi\pi^0$ backgrounds in $K\mu\nu$ modes

take E_{extra}>0.5GeV as control sample to estimate the shape and

size of $K\pi\pi^0$ backgrounds

shape: the smearing Gaussian is fixed to the parameters obtained from fit in the control sample

Size: scale the MC size in the signal region with the ratio of the number of $K\pi\pi^0$ events in data to that in MC in the control sample

Preliminary numerical results

Signal yields of the full data set

Modes	N_{tag}	$N_{tag,Ke\nu}$	$N_{tag,K\mu\nu}$
K^+K^-	54307 ± 252	1216 ± 40	1093 ± 37
$\pi^+\pi^-$	19996 ± 177 24369 ± 231	427 ± 23	400 ± 23
$K_{S}^{0}\pi^{0}\pi^{0}$	24369 ± 231	560 ± 28	558 ± 28
$K_S^{ ilde{0}}\pi^0$	71419 ± 286	1699 ± 47	1475 ± 43
$K_S^0\omega$	21249 ± 157	473 ± 25	501 ± 26
$K_S^0\eta$	9843 ± 117	242 ± 17	237 ± 18

preliminary result:

$$y_{CP} = -1.6\% \pm 1.3\% \text{(stat.)} \pm 0.6\% \text{(syst.)}$$

- result is statistically limited
- systematic uncertainty is relatively small

Comparison with world measurement

compatible with world average results

CLEOc 2012:

[PRD 86 (2012) 112001]

 $y_{CP} = (4.2 \pm 2.0 \pm 1.0)\%$

best precision in Charm factory

World average directly from HFAG2013 (BESIII (pre.) not included)

Xiao-Rui Lu @ Charm 2013

Toward global fit at BESIII

- least squares fitter: used for extracting expected physics parameters from the correlated experimental data
- **■** Monte Carlo validation of the fitter
- seven external inputs in the test: R_{WS} , r^2 , $\delta_{K\pi}$, x_D , y_D , x'^2 and y'
- their uncertainties are assumed to be uncorrelated

$$R_{WS} = r^2 + ry_D \cos(\delta_{K\pi})$$
$$-rx_D \sin(\delta_{K\pi}) + \frac{(x_D^2 + y_D^2)}{2},$$
$$x' = x_D \cos\delta_{K\pi} + y_D \sin\delta_{K\pi},$$
$$y' = y_D \cos\delta_{K\pi} - x_D \sin\delta_{K\pi}.$$

D decay mode	f^{cor}
$K^-\pi^+$	$1 + R_{WS}$
K^+K^-	2
$K_S\pi^0$	2
$K^-\pi^+, K^+\pi^-$ (1-	$+R_{WS})^2 - 4r\cos\delta_{K\pi}(r\cos\delta_{K\pi} + y_D)$
$K^-\pi^+, K^+K^-$	$1 + R_{WS} + 2r\cos\delta_{K\pi} + y_D$
$K^-\pi^+, K_S\pi^0$	$1 + R_{WS} - 2r\cos\delta_{K\pi} - y_D$
$K^-\pi^+, K^+e^-\bar{\nu}_e$	$1 - ry_D \cos \delta_{K\pi} - rx_D \sin \delta_{K\pi}$
$K^+K^-, K_S\pi^0$	4
$K^+K^-, Ke\nu_e$	$2(1+y_D)$
$K_S\pi^0, Ke\nu_e$	$2(1-y_D)$

Sensitivity of the global fit at BESIII

- MC study corresponds to 3.0 / fb data
- □ input of the central values of the world average in 2012:
- with the external constrains of :

$$\delta_{K\pi} = 22.1^{+9.7}_{-11.1}(^{o}), \ y_D = 0.75 \pm 0.12(\%)$$

u output:

$$\delta_{K\pi}$$
: $\pm 8.3(^{\circ}), y_D$: $\pm 0.10(\%)$

Summary

- Quantum-correlated D^0 - $\underline{D^0}$ production on threshold provide an unique way to measure the charm mixing parameters
- BESIII collected 2.9 /fb e^+e^- collision data at 3.773 GeV the world-largest on-threshold data in charm factory
- Strong phase difference in $D^0 \rightarrow K\pi$ decays is measured with the best accuracy help to improve the world measurement of the mixing parameters x and y
- The mixing parameter y_{CP} is determined, which is compatible with the world average *still statistically limited*
- More charm data will be collected at BESIII; work on global fit is ongoing

Thank you! 谢谢大家!