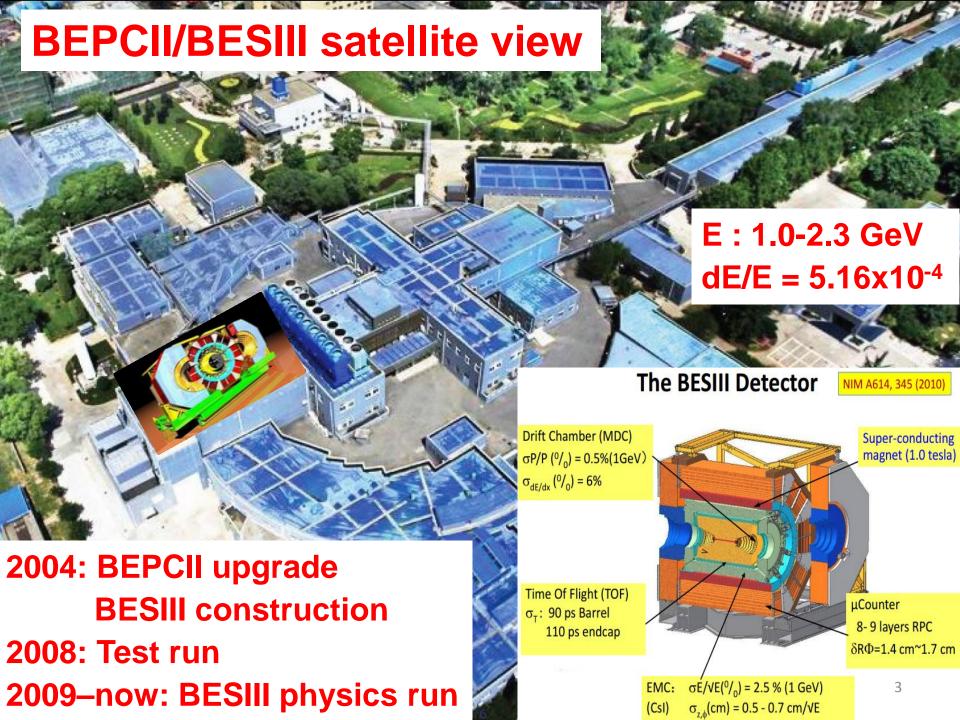
Study of charmonium decays at BESIII

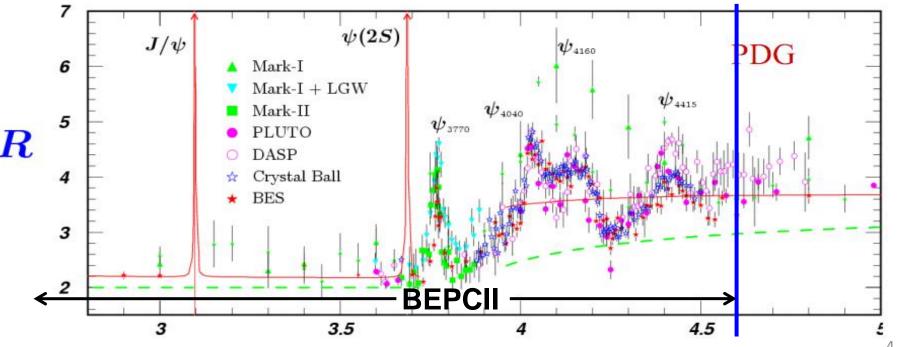
Liu Zhiqiang (刘 志强)

(On behalf of BESIII Collaboration)


The 6th International Workshop on Charm Physics 31 Aug - 4 Sept 2013; Manchester, England

OUTLINE

- ☐ BESIII/BEPCII status
- ☐ BESIII data sets
- **□** BESIII selected results
 - ✓ Baryonic decays of particles above DD threshold
 - ✓ Light hadron spectroscopy: charmonium radiative decays
- □ Summary

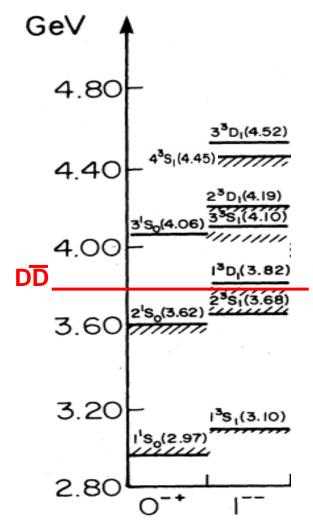


BEPCII energy region

- Resonances: charmonia, charmed mesons,...
- Threshold Characteristics: pairs of τ , D, D_s, ...
- Transition Between: smooth and resonances,

perturbative and non-perturbative QCD

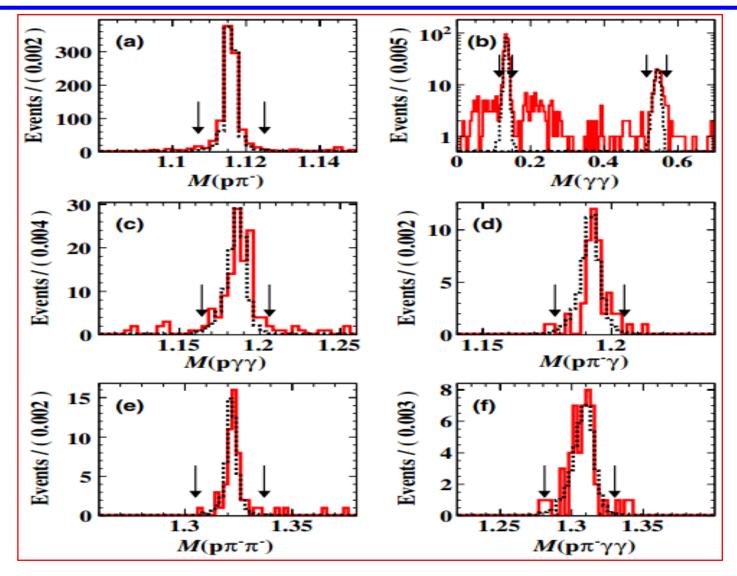
Energy Location: glueball, hybrids and multi-quark states


BESIII data sets

	Previous Data	BESIII Present	Goal
J/ψ	BESII: 58 M	1.2 B 20×BESII	10 B
ψ(3686)	CLEO: 28 M	0.5 B 20×CLEO-c	3 B
ψ(3770)	CLEO: 0.8 /fb	2.9 /fb 3.5×CLEO-c	20 /fb
ψ(4040)& ψ(4160)& ψ(4260)& ψ(4360)	CLEO: 0.6 /fb @ψ(4160)	2011: 0.5 /fb @ψ(4040) 2013: 2 /fb @ψ(4260), 0.5 /fb @ψ(4360) data for lineshape	5-10 /fb
continuum& R scan& τ scan		2009: 44 /pb @3.65 GeV 2012: R @2.23, 2.4, 2.8, 3.4 GeV 25 /pb τ @3.542, 3.554, 3.561, 3.600 GeV	

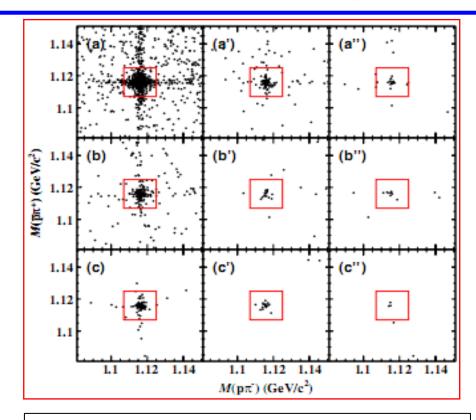
BESIII selected results

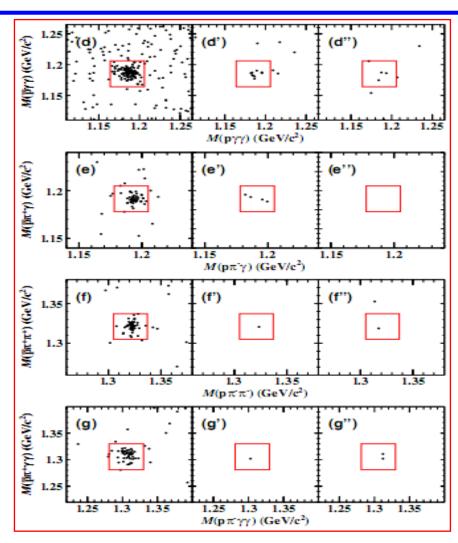
- ✓ Baryonic decays of particles above DD threshold :
 - $\psi(3770)$ and $\psi(4040)$ baryonic decays
- ✓ Light hadron spectroscopy: charmonium radiative decays
 - $X(p\bar{p})$ in $J/\psi \rightarrow \gamma p\bar{p}$ decays


ψ(3770) and ψ(4040) baryonic decays

Stephen Godfrey and Nathan Isgur PRD 32, 189(1985)

- Above DDb threshold, exist several broad 1⁻⁻ resonances: $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$.
- BESII measured $\psi(3770)$ decay to non-DDb (15±5)%, assuming only $\psi(3770)$ exist in 3.70~3.87 GeV.
- BESII firstly observed a non-DDb decay of $\psi(3770)\rightarrow\pi^+\pi^-J/\psi$.
- BESIII firstly observed a non-DDb decay of $\psi(4040)\rightarrow \eta J/\psi$.
- Fewer searches for baryonic decays of $\psi(3770)$
- No searches for baryonic decays of $\psi(4040)$


$\psi(3770)$ and $\psi(4040)$ baryonic decays


PRD 87, 112011(2013)

 $\Lambda \overline{\Lambda} \pi^+ \pi^-, \Lambda \overline{\Lambda} \pi^0, \Lambda \overline{\Lambda} \eta, \Sigma^+ \overline{\Sigma^-}, \Sigma^0 \overline{\Sigma^0}, \Xi^- \overline{\Xi^+}$ and $\Xi^0 \Xi^0$ are studied

ψ(3770) and ψ(4040) baryonic decays

- Assuming no interference between continuum and resonances
- Obtain events from $\psi(3770)$ and $\psi(4040)$ decays.

PRD 87, 112011(2013)

2-D scatter plots for (a-g) $\psi(3770)$, (a'-g') $\psi(4040)$ and (a"-g") continuum data.

$\psi(3770)$ and $\psi(4040)$ baryonic decays

Mode f	$N_{\text{obs}}^f $ (3.773)	$N_{\rm B}^f$ (3.773)	$N_{\rm obs}^f \\ (3.650)$	$N_{\rm B}^f$ (3.650)	$f_{\infty}^{3.773}$	$N^S_{\psi(3770) o f}$	N ^{up} ψ(3770)→,	_f ε	$\Delta_{ m sys}$	$\mathcal{B}_{\psi(3770)\to f} \\ [\times 10^{-4}]$	\mathcal{B}^{up} [× 10 ⁻⁴]
$\Lambda ar{\Lambda} \pi^+ \pi^-$	844.0 ± 33.6	5.2	$14.2^{+5.6}_{-4.2}$	0.1	45.27	$200.6^{+193.1}_{-255.7} \pm 42.0$		0.1321	8.0	$1.80^{+1.74}_{-2.30} \pm 0.40$	<4.7
$\Lambda ar{\Lambda} \pi^0$	124.9 ± 14.4	3.4	$7.1^{+5.0}_{-2.2}$	0.0	42.50	$-180.3^{+94.6}_{-213.0} \pm 16.5$	2 83.6	0.1694	8.0	$-1.28^{+0.67}_{-1.51} \pm 0.15$	< 0.7
$\Lambda ar{\Lambda} \eta$	74.0 ± 9.5	0.9	$3.0^{+3.6}_{-1.6}$	0.0	44.76	$-61.2^{+72.2}_{-161.4} \pm 7.9$	87.7	0.1518	8.1	$-1.22^{+1.44}_{-3.21} \pm 0.19$	<1.9
$\Sigma^+ \bar{\Sigma}^-$	100.5 ± 11.9	0.7	$3.3^{+4.3}_{-1.7}$	0.1	38.27	$-22.7^{+66.1}_{-165.0} \pm 5.1$	96.0	0.1975	8.0	$-0.21^{+0.63}_{-1.56} \pm 0.05$	<1.0
$\Sigma^0 \bar{\Sigma}^0$	43.5 ± 6.7	0.0	$0.0^{+2.2}_{-0.0}$	0.0	38.69	$43.5^{+6.7}_{-85.4} \pm 5.8$	56.6	0.1752	8.0	$0.30^{+0.05}_{-0.58} \pm 0.05$	< 0.4
E -Ē+	48.5 ± 7.0	0.0	$0.5^{+2.8}_{-1.4}$	0.0	41.74	$27.6^{+58.9}_{-117.1} \pm 3.7$	119.7	0.1060	8.1	$0.31^{+0.66}_{-1.32} \pm 0.05$	<1.5
$\Xi^0\bar{\Xi}^0$	43.5 ± 6.6	1.3	$2.0^{+3.2}_{-1.2}$	0.0	40.13	$-38.1^{+48.6}_{-128.6} \pm 5.6$	60.7	0.0581	8.2	$-0.80^{+1.03}_{-2.72} \pm 0.14$	<1.4
	$N_{ m obs}^f$	$N_{ m B}^f$	$N_{ m obs}^f$	$N_{ m B}^f$	4.000					$\mathcal{B}_{\psi(4040) \rightarrow f}$	\mathcal{B}^{up}
Mode f	$N_{\rm obs}^f \\ (4.009)$	$N_{\rm B}^f$ (4.009)	$N_{\rm obs}^f \\ (3.650)$	$N_{\rm B}^f$ (3.650)	$f_{ m co}^{4.009}$	$N_{\psi(4040) \rightarrow f}^{S}$	$N_{\psi(4040) \rightarrow f}^{\text{up}}$	ε	$\Delta_{ m sys}$	$\mathcal{B}_{\psi(4040)\to f} \\ [\times 10^{-4}]$	<i>B</i> ^{up} [× 10 ^{−4}]
$\frac{\text{Mode } f}{\Lambda \bar{\Lambda} \pi^+ \pi^-}$				$N_{\rm B}^f$ (3.650)	f ^{4.009} _{co}	Ψ(1010) -)	$N_{\psi(4040)\to f}^{\text{up}}$ 35.6	ε 0.1492		[× 10 ⁻⁴]	
	(4.009)	(4.009)	(3.650)	(3.650)					9.9	[× 10 ⁻⁴]	$[\times 10^{-4}]$
$\Lambda \bar{\Lambda} \pi^+ \pi^-$	(4.009) 79.2 ± 10.0	(4.009)	(3.650) 14.2 ^{+5.6} _{-4.2}	(3.650)	7.69	$-49.2^{+33.8}_{-44.2} \pm 9.8$	35.6	0.1492	9.9 9.9	$[\times 10^{-4}]$ $-3.57^{+2.45}_{-3.21} \pm 0.79$	[× 10 ⁻⁴]
$\frac{\overline{\Lambda}\bar{\Lambda}\pi^{+}\pi^{-}}{\Lambda\bar{\Lambda}\pi^{0}}$ $\frac{\Lambda\bar{\Lambda}\eta}{\Sigma^{+}\bar{\Sigma}^{-}}$	(4.009) 79.2 ± 10.0 $14.5^{+4.1}_{-4.3}$	(4.009) 20.0 0.5	(3.650) 14.2 ^{+5.6} _{-4.2} 7.1 ^{+5.0} _{-2.2}	(3.650) 0.1 0.0	7.69 6.80	$-49.2^{+33.8}_{-44.2} \pm 9.8$ $-34.3^{+15.5}_{-34.3} \pm 3.0$	35.6 12.6	0.1492 0.1753	9.9 9.9 9.9	$[\times 10^{-4}]$ $-3.57^{+2.45}_{-3.21} \pm 0.79$ $-2.14^{+0.97}_{-2.14} \pm 0.28$	[× 10 ⁻⁴] <2.9 <0.9
$\Lambda \bar{\Lambda} \pi^+ \pi^- \Lambda \bar{\Lambda} \pi^0 \Lambda \bar{\Lambda} \eta$	(4.009) 79.2 ± 10.0 $14.5^{+4.1}_{-4.3}$ $16.0^{+4.2}_{-4.3}$	(4.009) 20.0 0.5 3.6	(3.650) $14.2^{+5.6}_{-4.2}$ $7.1^{+5.0}_{-2.2}$ $3.0^{+3.6}_{-1.6}$	0.1 0.0 0.0	7.69 6.80 7.38	$-49.2^{+33.8}_{-44.2} \pm 9.8$ $-34.3^{+15.5}_{-34.3} \pm 3.0$ $-9.8^{+12.5}_{-26.9} \pm 3.3$	35.6 12.6 16.2	0.1492 0.1753 0.1674	9.9 9.9 9.9	$[\times 10^{-4}]$ $-3.57^{+2.45}_{-3.21} \pm 0.79$ $-2.14^{+0.97}_{-2.14} \pm 0.28$ $-1.60^{+2.06}_{-4.43} \pm 0.57$ $-0.74^{+0.89}_{-2.14} \pm 0.17$	<2.9 <0.9 <3.0
$\frac{\overline{\Lambda}\bar{\Lambda}\pi^{+}\pi^{-}}{\Lambda\bar{\Lambda}\pi^{0}}$ $\frac{\Lambda\bar{\Lambda}\eta}{\Sigma^{+}\bar{\Sigma}^{-}}$	(4.009) 79.2 ± 10.0 $14.5^{+4.1}_{-4.3}$ $16.0^{+4.2}_{-4.3}$ $8.5^{+3.0}_{-3.2}$	(4.009) 20.0 0.5 3.6 0.2	(3.650) $14.2^{+5.6}_{-4.2}$ $7.1^{+5.0}_{-2.2}$ $3.0^{+3.6}_{-1.6}$ $3.3^{+4.3}_{-1.7}$	0.1 0.0 0.0 0.0 0.1	7.69 6.80 7.38 4.92	$-49.2^{+33.8}_{-44.2} \pm 9.8$ $-34.3^{+15.5}_{-34.3} \pm 3.0$ $-9.8^{+12.5}_{-26.9} \pm 3.3$ $-7.5^{+8.9}_{-21.4} \pm 1.5$	35.6 12.6 16.2 11.0	0.1492 0.1753 0.1674 0.1704	9.9 9.9 9.9 9.9	$[\times 10^{-4}]$ $-3.57^{+2.45}_{-3.21} \pm 0.79$ $-2.14^{+0.97}_{-2.14} \pm 0.28$ $-1.60^{+2.06}_{-4.43} \pm 0.57$ $-0.74^{+0.89}_{-2.14} \pm 0.17$	<2.9 <0.9 <3.0 <1.3 <0.7

Since no statistically significant signal is observed, upper limits are set at 90% C.L.

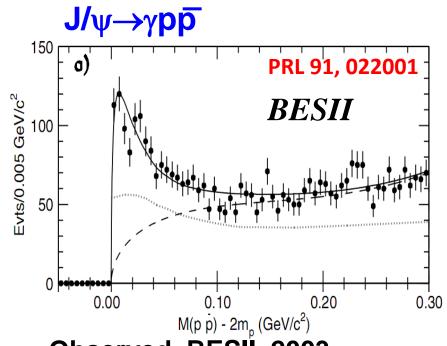
ψ(3770) and ψ(4040) baryonic decays

Continuum data limited:

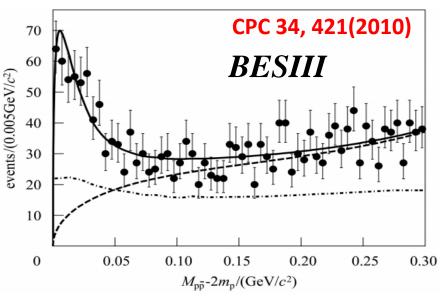
- ✓ Statistical error large, central value ~1_o consistant with zero
- ✓ It doesn't mean there are no ψ(3770) and ψ(4040) baryonic decays

Dominant error, continuum subtraction

Phase difference not clear, resonance and continuum


■ Achieve the goals:

- ✓ More continuum data needed
- √ Fine energy scan helpful


Measure cross section, exclusive non-DDb processes

Determine branching fraction and phase difference

Near-Threshold Enhancement in M(pp)

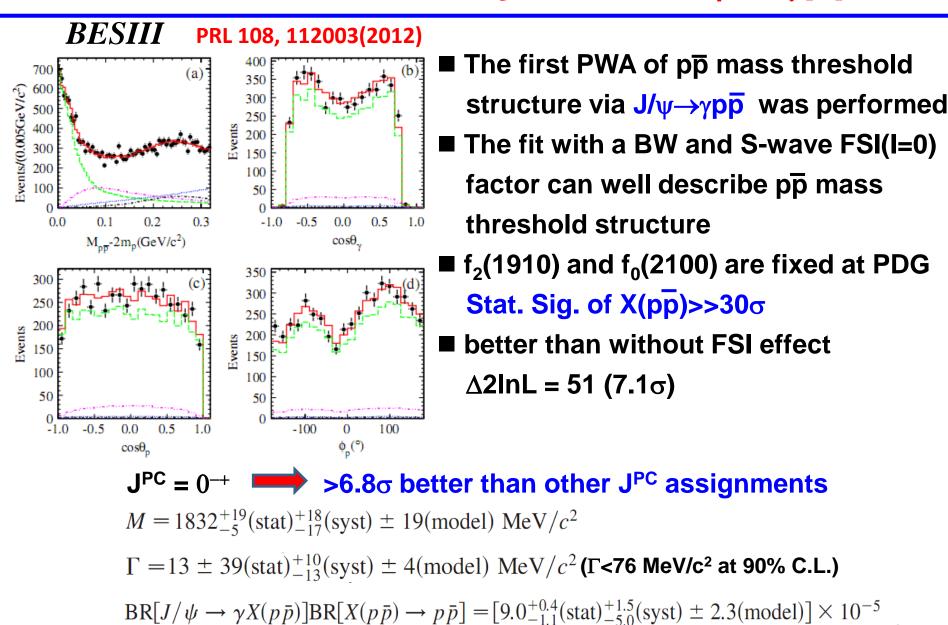
$\psi(3686)\rightarrow\pi^{+}\pi^{-}J/\psi$, $J/\psi\rightarrow\gamma p\overline{p}$

Observed BESII 2003

$$M = 1859^{+3}_{-10} (\text{stat})^{+5}_{-25} (\text{syst}) \text{ MeV}/c^2$$

 Γ < 30 MeV/ c^2 at 90% C.L.

Confirmed BESIII 2010


$$M = 1861^{+6}_{-13} \text{ (stat)}^{+7}_{-26} \text{ (syst) } \text{MeV}/c^2$$

 Γ < 38 MeV/ c^2 at 90% C.L.

- Results consistant with each other
- Many possibilities: conventional meson, pp bound state, multi-quark, glueball, final state interaction(FSI)......
- Spin-Parity analysis of pp mass threshold structure in J/ψ radiative decays is necessary

12

Partial Wave Analysis of J/ψ→γpp̄

Summary

- > BEPCII/BESIII is performing in very good shape
- > Search for baryonic decays of $\psi(3770)$ and $\psi(4040)$ are studied at BESIII.
 - Although no obvious signal, it doesn't mean no such processes
 - More continuum data needed
 - **■** Energy scan for exclusive processes
- > X(ppb) in J/ ψ > γ ppb decays has been extensively studied at BESIII
- More studies are on-going and new results are expected in the near future.
 - On non-DDb decays of particles above DDb threshold
 - Light hadron spectroscopy from charmonium radiative decays.

