Baryon spectroscopy at BESIII

Medina Ablikim

(for the BESIII Collaboration)

Institute of High Energy Physics, Beijing

International Workshop on Hadron Nuclear Physics 2015
July 7-11, 2015, Krabi, Thailand

OUTLINE

- Status of BEPCII/BESIII
- Recent results of baryon spectroscopy from BESIII
 - ✓ Two hyperons in $\psi(3686) \rightarrow K^- \Lambda \Xi^+$
 - \checkmark Exited strange baryons in $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^+\pi^-$
 - ✓ Two new excited baryon states in $\psi(3686) \rightarrow p \bar{p} \pi^0$
 - \checkmark N(1535) in $\psi(3686) \rightarrow p p \eta$
- Summary and perspective

The BEPCII Collider

BEMS (beam energy measurement system): based on Compton backscattering

Beam energy: 1.0 - 2.3 GeV

Peak Luminosity:

achieved: <u>0.85x10³³cm⁻²s⁻¹@3770</u> MeV

Optimum energy: 1.89 GeV

Energy spread: 5.16 ×10⁻⁴

No. of bunches: 93

Bunch length: 1.5 cm

Total current: 0.91 A

Circumference: 237m

The BESIII detector

The new BESIII detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.

Baryon spectroscopy

- ➤ Baryon spectroscopy is an important field to understand the internal structure of hadrons.
- ➤ The established baryons are described by three-quark (qqq) configurations.
- Non-relativistic quark model:
 - It is quite successful in interpreting baryon resonances.
 - It also provides an explicit classification for light baryons in terms of group symmetry.
 - It tends to predict far more excited states than are found experimentally ("miss resonance problem").
- > From theoretical point of view, this could be due to a wrong choice of the degrees of freedom.
- > Experimentally, the situation is very complicated due to the large number of broad and overlapping states that are observed.

Charmonium decays can give novel insights into baryons and give complementary information to other experiments

- ✓ Isospin 1/2 filter: $\psi \to N\overline{N}\pi, \psi \to N\overline{N}\pi\pi$
- ✓ Missing N* with small couplings to πN & γN , but large coupling to gggN : $\psi \to N \overline{N} \pi / \eta / \eta' / \omega / \phi$, $\overline{p} \Sigma \pi$, $\overline{p} \Lambda K$...
- ✓ Not only study excited nucleons, but also baryons Λ^* , Σ^* , Ξ^*
- √ Gluon-rich environment: a favorable place for producing hybrid (qqqg) baryons
- √ High statistics of charmonium @ BESIII

Baryon spectroscopy

- 3850~4590 MeV: 0.5/fb fine scan
- In 2015, we have done energy scan at 2000—3000 MeV

High statistics of charmonium @BESIII provide an opportunity to study baryon spectroscopy.

Theoretically: Quark model predicts over $30 \Xi^*$ states,

Experimentally: $11 \, \Xi^*$ states observed to date, few of them are well

established with spin parity determined

			Status as seen in					
Particle	J^P	Overall status	$\Xi\pi$	ΛK	ΣK	$\Xi(1530)\pi$	Other channels	
$\Xi(1318)$	1/2+	****					Decays weakly	
$\Xi(1530)$	3/2+	***	****					
$\Xi(1620)$		*	*					
$\Xi(1690)$		***		***	**			
$\Xi(1820)$	3/2-	***	**	***	**	**		
$\Xi(1950)$		***	**	**		*		
$\Xi(2030)$		***		**	***			
$\Xi(2120)$		*		*				
$\Xi(2250)$		**					3-body decays	
$\Xi(2370)$		**					3-body decays	
$\Xi(2500)$		*		*	*		3-body decays	

Most observations and measurements from bubble chamber experiment or diffractive Kp interaction.

- > In 1978, the $\Xi(1690)$ was first observed in the $(\Sigma \ \overline{K})$ final state in the reaction $K^-p{\to}(\Sigma \ \overline{K})$ $K\pi$ at CERN
- > In 2008, BABAR determined spin-parity of $\Xi(1690)$ to be $J^p = \frac{1}{2}$ in $\Lambda_c^+ \to \Xi^- \pi^+ K^+$

- \triangleright In 1976, Ξ(1820) was first observed in K⁻Λ mass spectrum in Kp scattering at CERN.
- In 1987, CERN-SPS experiment determined spin-parity of $\Xi(1820)$ to be $J^p = 3/2$

- \triangleright At present $\Xi(1690)$ and $\Xi(1820)$ are firmly established.
- Further investigation of their properties is important to the understanding of Ξ^* .
- ➤ Besides from scattering experiment, decays from charmonium states offer a good opportunity to search for additional Ξ* states.
- ➤ Our knowledge of charmonium decays into hadrons, especially to hyperons, is limited. The precise measurements of the branching fractions may help provide a better understanding of the decay mechanism.

data sample: $106 \times 10^6 \, \psi'$

PRD 91, 092006 (2015)

The decays is reconstructed from cascade decay:

$$\psi(3686)->K^{-}\Lambda\overline{\Xi}^{+} \xrightarrow{\overline{p}\pi^{+}} \overline{p}\pi^{+}$$

$$\downarrow p\pi^{-}$$

- Signal: double Gaussian function.
- bg: a first order Chebychev polynomial
- non Ξ^+ bg estimated with the $\psi(3686)$ inclusive MC sample & side band events from data

PRD 91, 092006 (2015)

an extended unbinned maximum likelihood fit is performed.

$$B(\psi(3686) \rightarrow K^{-}\Lambda \ \Xi^{+}) = (3.86 \pm 0.27 \pm 0.32) \times 10^{-5}$$

	$\Xi(1690)^{-}$	$\Xi(1820)^{-}$
$M(\text{MeV}/c^2)$	$1687.7\pm3.8\pm1.0$	$1826.7 \pm 5.5 \pm 1.6$
$\Gamma(\text{MeV})$	$27.1\pm10.0\pm2.7$	$54.4\pm15.7\pm4.2$
Event yields	74.4 ± 21.2	136.2 ± 33.4
Significance(σ)	4.9	6.2
Efficiency(%)	32.8	26.1
\mathcal{B} (10 ⁻⁶)	$5.21 \pm 1.48 \pm 0.57$	$12.03\pm2.94\pm1.22$
$M_{\rm PDG}({ m MeV}/c^2)$	1690 ± 10	1823 ± 5
$\Gamma_{\mathrm{PDG}}(\mathrm{MeV})$	<30	24^{+15}_{-10}

PRD 91, 092006 (2015)

- Two hyperons $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ are observed in $\psi(3686) \rightarrow K^{-}\Lambda \Xi^{+}+c.c$
- Resonance parameters consist with PDG

Measurement of $\psi(3686) \rightarrow \gamma K^- \Lambda \Xi^+ + c.c.$

Observation of the decay $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^{\pm} \pi^{\mp} + \text{c.c.}$

data sample: $106 \times 10^6 \, \psi'$

PRD 88, 112007 (2013)

The candidate events are reconstructed in six modes:

$$\psi(3686) \rightarrow$$

$$\Lambda \bar{\Sigma}^+ \pi^- (\bar{\Sigma}^+ \rightarrow \bar{n} \pi^+)$$

$$\bar{\Lambda}\Sigma^-\pi^+(\Sigma^- \rightarrow n\pi^-)$$

$$\Lambda \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \rightarrow \bar{n}\pi^-)$$

$$\bar{\Lambda}\Sigma^{+}\pi^{-}(\Sigma^{+} \rightarrow n\pi^{+})$$

$$\Lambda \bar{\Sigma}^- \pi^+ (\bar{\Sigma}^- \rightarrow \bar{p} \pi^0)$$

$$\bar{\Lambda} \Sigma^{+} \pi^{-} (\Sigma^{+} \rightarrow p \pi^{0})$$

Observation of the decay $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^{\pm} \pi^{\mp} + \text{c.c.}$

data sample: $106 \times 10^6 \, \psi'$

PRD 88, 112007 (2013)

- > Excited strange baryons around 1.4 to 1.7GeV/c² are observed
- ➤ Partial wave analysis (PWA) is performed in order to determine the correct detection efficiency
- > The weighted averages of the branching fractions are determined to be

$$\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{+} \pi^{-} + \text{c.c.})$$

$$= (1.40 \pm 0.03 \pm 0.13) \times 10^{-4}$$

$$\mathcal{B}(\psi(3686) \to \Lambda \bar{\Sigma}^{-} \pi^{+} + \text{c.c.})$$

$$= (1.54 \pm 0.04 \pm 0.13) \times 10^{-4}$$

Observation of two new excited baryon states in $\psi(3686) \rightarrow p \ \pi^0$

- > In 2001, BESII experiment studied N* production in the decay of $J/\psi \rightarrow p p \eta$ using PWA.
- > BESII experiment observed a new resonance, N(2065), in the decay $J/\psi \rightarrow p$ \bar{n} $\pi^- + c.c.$
- > In 2009, N(2065) confirmed by BESII in the decay of $J/\psi \to p \ \bar{p} \ \pi^0$
- > $\psi(3686)$ > p \bar{p} π^0 was studied by CLEO collaboration using 24.5×10⁶ $\psi(3686)$ events.

Observation of two new excited baryon states in $\psi(3686) \rightarrow p \ \bar{p} \ \pi^0$

data sample: $106 \times 10^6 \, \psi'$

PRL 110, 022001 (2013)

- Proton and anti-proton are identified using dE/dx and TOF information
- At least two photos are selected

Dominated by two-body decays

➤ In PWA, all N* resonances up to 2.2 GeV with spin up to 5/2 listed in PDG are considered

Observation of two new excited baryon states in $\psi(3686) \rightarrow p \ \bar{p} \ \pi^0$

PRL 110, 022001 (2013)

Resonance	$M(\text{MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	ΔS	$\Delta N_{ m dof}$	Sig.
N(1440)	1390^{+11+21}_{-21-30}	$340^{+46+70}_{-40-156}$	72.5	4	11.5σ
<i>N</i> (1520)	$1510^{+3}_{-7}{}^{+11}_{-9}$	115^{+20+0}_{-15-40}	19.8	6	5.0σ
<i>N</i> (1535)	$1535^{+9}_{-8}{}^{+15}_{-22}$	120^{+20+0}_{-20-42}	49.4	4	9.3σ
<i>N</i> (1650)	$1650^{+5}_{-5}{}^{+11}_{-30}$	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	1700^{+30+32}_{-28-35}	$450^{+109+149}_{-94-44}$	55.6	6	9.6σ
N(2300)	$2300^{+40+109}_{-30-0}$	$340^{+30+110}_{-30-58}$	120.7	4	15.0σ
N(2570)	$2570^{+19}_{-10}{}^{+34}_{-10}$	250^{+14+69}_{-24-21}	78.9	6	11.7σ

- > 5 well known N* are measured
- ➤ Two new baryonic excited states N(2300)(1/2+) and N(2570)(5/2-) are observed!
- ➤ The structures in ppbar mass spectrum can be reproduced by the interference of N* resonances

Study N(1535) in $\psi(3686) \rightarrow p$ p η decay

data sample: $106 \times 10^6 \, \psi'$

PRD 88, 032010 (2013)

✓ The decay topology is quite simple, p p γγ.

Two clusters corresponding to the pη mass threshold enhancement are visible.

Study N(1535) in $\psi(3686) \rightarrow p p \eta$ decay

- N(1535) and PHSP(1/2-) are dominant
- No evidence for a ppbar resonance

explained by interference between N(1535) and phase space

PRD 88, 032010 (2013)

Mass and width of N(1535)

$$M = 1524 \pm 5^{+10}_{-4} \text{ MeV}/c^2$$

$$\Gamma = 130^{+27+57}_{-24-10} \text{ MeV}/c^2$$

PDG value:

- M = 1525 to 1545 MeV/ c^2
- $\Gamma = 125 \text{ to } 175 \text{ MeV}/c^2$

Branching fraction:

►
$$B(\psi' \to N(1535)\overline{p}) \times B(N(1535) \to p\eta) + c.c.$$

$$= (5.2 \pm 0.3^{+3.2}_{-1.2} \times 10^{-5})$$

Summary and perspective

- BESIII collected $0.5 \times 10^9 \text{ } \psi(2\text{S})$ and $1.3 \times 10^9 \text{ J/}\psi$ events.
- Many baryon states are presented:
 - \succeq $\Xi^{-}(1690)$ and $\Xi^{-}(1820)$ in $\psi(3686) \to K^{-}\Lambda \ \Xi^{+} + c.c.$
 - \triangleright excited strange baryons Λ^* and Σ^* in $\psi(3686) \rightarrow \Lambda \ \overline{\Sigma}^{\pm} \pi^{\mp}$
 - \triangleright excited baryon states N(2300) and N(2570) in ψ (3686) \rightarrow p \bar{p} π^0
 - ightharpoonup N(1535) in $\psi(3686) \rightarrow p$ p η
- Charmonium decays have proven to be a good lab for studying not only excited nucleon states, but also excited hyperons.
- **■** Provide complementary information to other experiment.
- **Expect more results from BESIII using full data sample.**

Thank You!

Back up

Baryon spectroscopy

• Are the states missing in the predicted spectrum because our models do not capture the correct degrees of freedom?

N_{predictied}: N₄>N₂>N₁>N₃, N_{observed} << N₁
• Or have the resonances simply escaped detection?

Nearly all existing data result from πN experiments

Observation of two new baryon excited states N(2300) and N(2570) in $\psi(3686) \rightarrow p p \pi^0$

Selection of p \bar{p} π^0

- Proton and anti-proton are identified
- using dE/dx and TOF information

$$\begin{array}{l} Pt > 300 MeV/c^2 \\ |cos(\theta)| < 0.8 \end{array} (\text{for } p, \bar{p}) \label{eq:pt_pt_p}$$

4C-kinematic fit:

$$\chi_{4C}^2(\gamma\gamma p\bar{p}) < 20$$

• $|M_{\gamma\gamma} - M_{\pi^0}| < 15 MeV/c^2$ $|M_{p\bar{p}} - M_{J/\Psi}| > 0.04 GeV/c^2$ Phys.Rev.Lett. 110 (2013) 022001

data sample: $1.06 \times 10^8 \, \psi'$

Two vertical bands: $\psi' o \pi^0 p \bar{p}$, $\eta p \bar{p}$

Horizontal band: : $\psi' \rightarrow X + J/\psi$, $J/\psi \rightarrow p\bar{p}$

Study N(1535) in $\psi(3686) \rightarrow p$ p η decay

N(1535)

For N(1535) with its

mass close to the threshold of its dominant decay channel $N\eta$, the approximation of a constant width is not very good. Thus, a phase-space-dependent width for N(1535) is also used

BW(s) =
$$\frac{1}{M_{N^*}^2 - s - iM_{N^*}\Gamma_{N^*}(s)}$$
.

The phase-space-dependent widths can be written as

$$\Gamma_{N^*}(s) = \Gamma_{N^*}^0 \left(0.5 \frac{\rho_{N\pi}(s)}{\rho_{N\pi}(M_{N^*}^2)} + 0.5 \frac{\rho_{N\eta}(s)}{\rho_{N\eta}(M_{N^*}^2)} \right),$$

where $\rho_{N\pi}$ and $\rho_{N\eta}$ are the phase space factors for the $N\pi$ and $N\eta$ final states, respectively,

$$\rho_{NX}(s) = \frac{2q_{NX}(s)}{\sqrt{s}}$$

$$= \frac{\sqrt{(s - (M_N + M_X)^2)(s - (M_N - M_X)^2)}}{s}$$

PWA of $\psi' o \pi^0 p \bar{p}$

N(940) into virtual proton + pi0

are also considered. According to the framework of soft π meson theory [22], the off-shell decay process is needed in this channel. Thus, N(940) with a mass of 940 MeV/ c^2 and zero width is included. The N(940) represents a virtual proton, which could emit a π^0 . The Feynman diagram of

this process can be found in Ref. [15].

[15] M. Ablikim *et al.* (BES Collaboration), Phys. Rev. D 80, 052004 (2009).

In summary, we studied the intermediate resonances, including their masses, widths, and spin parities, in the decay $\psi(3686) \rightarrow p\bar{p}\pi^0$. Two new N^* resonances are observed, in addition to five well-known N^* resonances. The masses and widths as well as the spin parities of the two new N^* states have been measured. The branching fractions of $\psi(3686) \rightarrow p\bar{p}\pi^0$ and the product branching fractions through each intermediate N^* state are measured. No clear evidence for N(1885) or N(2065) has been found. The hypothetical $p\bar{p}$ resonance has a significance of less than 4σ , indicating that the threshold enhancement most likely is due to interference of N^* intermediate resonances.

