

Nucleon EM Form Factors in BESIII

Samer Ahmed^{1,2}, Alaa Dbeyssi¹, Paul Larin², Dexu Lin^{1,2}, Frank Maas^{1,2,3}, Cristina Morales¹, Christoph Rosner^{1,2}, Yadi Wang¹ and BESIII Collaboration

1.Helmholtz-Institut Mainz, 55128 Mainz, Germany 2.Institut für Kernphysik, JGU Mainz, 55099 Mainz, Germany 3.PRISMA Cluster of Excellence, JGU Mainz, 55099 Mainz, Germany

ECT* Workshop 'Probing transverse nucleon structure at high momentum transfer' 18th – 22nd April 2016, Trento (Italia)

Outline

- BESIII@BEPCII
- Motivation
- Proton TL EM form factors in BESIII
- Neutron TL EM form factors in BESIII
- Summary

Completely new detector
Comparable performance to CLEO-c, + muon ID

BESIII@BEPCII

BEPCII Collider

BESIII Detector

R inner: 63mm R outer: 810 mm Length: 2582 mm

43 Layers

 $\sigma(p)/p < 0.5\%$ $\sigma_{dE/dx}/dE/dx < 6\%$ [Nucl. Instr. Meth. A614, 345 (2010)]

CsI(TI) EMC

6240 CsI(TI) crystals: 28cm (**15X**₀)

Barrel: $|\cos\Theta| < 0.83$

Endcap: $0.85 < |\cos\Theta| < 0.93$

 $\sigma(E)/E < 2.5\%$

 $\sigma_{Z,\Phi}(E) = 0.5 - 0.7 \text{ cm}$

RPC MUC

8 – 9 layers of RPC p>400 MeV/c

 $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$

TOF

BTOF: two layers;

ETOF: 48 crys. for each

 $\sigma(t) = 80ps$ (barrel)

 $\sigma(t) = 120ps \text{ (endcap)}$

BESIII Data Samples

BESIII Data Samples for Nucleon FFs

In 2015 world largest scan data sample between 2 and 3.08 GeV!!

World largest J/Psi, Psi(2S), Psi(3770, Y(4260)... produced directly in e+e- collisions

Physics program

[Int. J. Mod. Phys. A, Vol. 24 (2009)]

Light hadron physics

- Meson and baryon spetroscopy
- Multiquark states
- Threshold effects
- Glueballs and hybrids
- Two photon physics
- Form factors

QCD and τ

- Precision R measurement
- τ decays

Charmonium physics

- Precision spectroscopy
- Transitions and decays

Charm physics

- Semi-leptonic form factors
- \bullet Decay constants $\boldsymbol{f}_{\!_{D}}$ and $\boldsymbol{f}_{\!_{Ds}}$
- CKM matrix: |Vcd|, |Vcs|
- Glueballs and hybrids
- D0 − D0 mixing, CPV
- Strong phases

Precision mass measurements

- τ mass
- D, D* mass

XYZ meson physics

- Y(4260), Y(4360) properties
- Zc(3900)+...

Physics program

[Int. J. Mod. Phys. A, Vol. 24 (2009)]

Light hadron physics

- Meson and baryon spetroscopy
- Multiquark states

Charm physics

- Semi-leptonic form factors
- Decay constants f and f
- Rich in resonanes: charmonia and charmed mesons
- Threshold characteristics (pairs of τ , D, D_s, Λ_c ...)
- Transition region between continuum and resonances, perturbative and non-perturbative QCD
- Location of new hadrons: glueballs, hybrids, multi-quark states

Charmonium physics

- Precision spectroscopy
- Transitions and decays

XYZ meson physics

- Y(4260), Y(4360) properties
- Zc(3900)+...

Nucleon EM Form Factors

Electro-magnetic Form Factors (FFs)

Spin ½ Baryons: two EM FFs

$$\Gamma^{\mu}(p_1, p_2) = \gamma^{\mu} F_1(q^2) + \frac{i\sigma^{\mu\nu} q_{\nu}}{2M} F_2(q^2)$$

$$F_1(0) = Q; F_2(0) = K$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

$$G_E(q^2) = F_1(q^2) + \frac{q^2}{4M} F_2(q^2)$$

Space-like region

FFs real

Time-like region

FFs complex

$$G_E(4M^2)=G_M(4M^2)$$
 unphysical region region $\operatorname{Re}(\mathsf{q}^2)$

Connected by

Time-like EM Form Factors (FFs)

Experimental access: angular distribution of Nucleon in e⁺e⁻-center-of-mass

<u>Direct annihilation</u> (fixed q^2 , $q^2 \ge 0$):

[Nuovo Cim. 24 (1962) 170]

$$\frac{\partial \sigma^{Born,1\gamma}}{\partial \Omega} = \frac{\alpha^2 \beta C}{4q^2} [(1 + \cos^2 \theta) |G_M|^2 + \frac{4M^2}{q^2} \sin^2 \theta |G_E|^2]$$

$$\sigma^{Born}(q^2) = \frac{4\pi \alpha^2 \beta C}{3q^2} [|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2]$$

$$\sigma^{Born}(q^2) = \frac{4\pi\alpha^2\beta C}{3q^2} [|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2]$$

Effective FF:
$$|G| = \sqrt{\frac{\sigma^{Born}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi\alpha^2\beta C}{3q^2})}}$$
 C: Coulomb factor

Initial State $(4M^2 \le q^2 \le s)$:

Radiation

$$\frac{d^2\sigma^{ISR}}{dxd\theta_{\gamma}} = -W(s, x, \theta_{\gamma})\sigma^{Born}(q^2)$$

$$W^{LO}(s, x, \theta_{\gamma}) = \frac{\alpha}{\pi x} \left(\frac{2 - 2x + x^2}{\sin^2 \theta_{\gamma}} - \frac{x^2}{2} \right)$$

$$x = 1 - q^2/s = 2E_\gamma/\sqrt{s}$$

[arXiv:1105.4975v2]

Time-like EM Form Factors (FFs)

Experimental access: angular distribution of Nucleon in e⁺e⁻-center-of-mass

$$\frac{d\sigma^{Born,1\gamma}}{d\Omega} = \frac{\alpha^2 \beta C}{4q^2} [(1 + \cos^2 \theta) |\mathbf{G}_{\mathbf{M}}|^2 + \frac{4M^2}{q^2} \sin^2 \theta |\mathbf{G}_{\mathbf{E}}|^2]$$

$$\downarrow \mathbf{d}\sigma^{1\gamma \otimes 2\gamma}$$

$$\frac{d\sigma^{1\gamma \otimes 2\gamma}}{d\Omega} = \cos \theta [c_0(M_{p\overline{p}}^2) + c_1(M_{p\overline{p}}^2)\cos^2 \theta + c_2(M_{p\overline{p}}^2)\cos^4 \theta + \dots]$$

$$\mathcal{A}(\cos\theta, M_{p\overline{p}}) = \frac{\frac{d\sigma}{d\Omega}(\cos\theta, M_{p\overline{p}}) - \frac{d\sigma}{d\Omega}(-\cos\theta, M_{p\overline{p}})}{\frac{d\sigma}{d\Omega}(\cos\theta, M_{p\overline{p}}) + \frac{d\sigma}{d\Omega}(-\cos\theta, M_{p\overline{p}})}$$

Also interference between ISR and FSR could cause an asymmetry!

Direct annihilation vs ISR

Total cross section

Direct annihilation vs Initial State Radiation

- High σ x low luminosity = high statistics
- High q² precision (ideal for G_{E,M}, thresholds, structure studies...)
- High geometrical acceptance of NN pair
- Low background

- Low σ x high luminosity = high statistics
- Continuous q²-range available: m²_{th} < q² < s in one experiment
- Luminosity α bin width (low q² precision)
- Luminosity at threshold and acceptance != 0

Experimental situation: proton FFs

- First direct measurements of $\sigma_{Born}(ee-->p\overline{p})$ had poor statistics
 - → only extraction of **effective form factor** possible

$$|\mathbf{G}| = \sqrt{\frac{\sigma_{Born}}{(1 + \frac{1}{2\tau})(\frac{4\pi\alpha^2\beta C}{3E_{CM}^2})}}$$
 (Assumption: $|\mathbf{G}| = |\mathbf{G}_{\mathbf{E}}| = |\mathbf{G}_{\mathbf{M}}|$)

New measurements by BaBar (ISR) and pp-experiments:

- Steep rise at threshold
- Steps near 2.25 and 3.0 GeV
- Asymptotic behavior in SL and TL regions differ: $|G_{M}^{TL}(10 \text{ GeV}^2)| > |G_{M}^{SL}(10 \text{ GeV}^2)|$

- Only BaBar and PS170 with statistics for angular analysis
 - \rightarrow extraction of $\mathbf{R} = |\mathbf{G}_{\mathbf{E}}| / |\mathbf{G}_{\mathbf{M}}|$ possible
 - Precision between 11% and 43%
 - Strong tension between Babar and PS170
 - No individual determination of $|G_{_{\! H}}|$ and $|G_{_{\! M}}|$

Experimental situation: proton FFs

• Babar's statistics not enough to observe an asymmetry in the angular distribution

Being the integral asymmetry:

$$A_{\cos\theta_p} = \frac{\sigma(\cos\theta_p > 0) - \sigma(\cos\theta_p < 0)}{\sigma(\cos\theta_p > 0) + \sigma(\cos\theta_p < 0)}$$

$$= -0.025 \pm 0.014 \pm 003$$

Periodic interference near threshold
 [Phys. Rev. Lett. 114, 232301]

p = Proton momentum in p rest frame

Rescattering of proton and antiproton at low kinetic energy and distance ~1fm?

Experimental situation: neutron FFs

Only two direct measurements of $\sigma(e^+e^- \rightarrow n\overline{n})$ and neutron effective FF

- At threshold cross section different from zero
- Close to threshold flat cross section and $\sigma(\overline{nn}) \approx \sigma(\overline{pp})$
- $|G^n|$ seems to be larger than $|G^p|$ as q increases (pQCD: $|G^p| = 2 \cdot |G^n|$)
- No measurement of R = $|G_E/G_M|$ or $|G_E|$ and $|G_M|$ without previous assumption possible so far

Proton FFs from direct annihilation (scan)

Energy scan data samples

BESIII 2015: world largest scan samples between 2.0 and 3.08 GeV

BESIII high luminosity scan 2015

$E_{ m cm}({ m GeV})$	$L({ m pb}^{-1})$	$E_{ m cm}({ m GeV})$	$L({ m pb}^{-1})$
2.0000	10.074	2.0500	3.343
2.1000	12.167	2.1250	108.49
2.1500	2.841	2.1750	10.625
2.2000	13.699	2.2324	11.856
2.3094	21.089	2.3864	22.549
2.3960	66.869	2.5000	1.098
2.6444	33.722	2.6464	34.003
2.7000	1.034	2.8000	1.008
2.9000	105.253	2.9500	15.942
2.9810	16.071	3.0000	15.881
3.0200	17.290	3.0800	126.185

- High accuracy in q² (Ffs, thresholds, structure studies...)
- High geometrical acceptance (detector coverage 93% of 4π)
- Low background contamination

e⁺e⁻ → pp Phys. Rev. D91, 112004 (2015)

Based on 157 pb⁻¹ collected in 12 scan points between 2.23 – 3.71 GeV in 2011/2012

Event selection

• Good charged tracks:

Particle identification

$$dE/dx + TOF$$

prob(p) > prob(K,)

For positive track: E/p < 0.5, cos < 0.8

- $|tof_{p} tof_{\bar{p}}| < 4ns$
- Angle between tracks
- Momentum window for p and p

Background analysis

- Beam background: separated beam samples
- •2-body or multi-body with $p\overline{p}$ studied with MC Negligible or subtracted ($\sqrt{s} > 3.0 \text{ GeV}$)

e⁺e⁻ → pp Phys. Rev. D91, 112004 (2015)

Extraction of $\sigma^{Born}(ee \rightarrow p\overline{p})$ and |G| for each scan point:

$$\sigma^{\text{Born}}(q) = \frac{N_{\text{obs}(q)} - N_{\text{bg}(q)}}{L \cdot \epsilon(q) R(q)} \longrightarrow |G(q^2)| = \sqrt{\frac{\sigma^{\text{Born}}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi\alpha^2\beta C}{3q^2})}}$$

- Efficiencies between 60% and 3% (ConExc)
- Radiative corrections up to LO in ISR (ConExc)
- Normalization to e⁺e⁻→e⁺e⁻, e⁺e⁻→ γγ (Babayaga 3.5) [Phys.Lett.B520,16-24]

→ Overall uncertainty improved by 30%

Extraction of $R_{em} = |G_E/G_M|$ and $|G_M|$

• From a 2-parameter fit to the proton angular distribution in center-of-mass:

$$\frac{dN}{\epsilon \cdot (1+\delta) \cdot d\cos\theta_p} = N_{\text{norm}} \left[|G_M|^2 \times \left[\frac{q^2}{4M_p^2} \cdot (1+\cos\theta_p^2) + R^2 \right] \sin\theta_p^2 \right]$$

$$N_{norm} = \frac{2M_p^2 \cdot L \cdot \hbar c \cdot \pi \alpha^2 \cdot \beta C}{a^4}$$

From the measurement of the expectation value (method of moments):

$$<\cos^2\theta_p> = \frac{N_{norm}\cdot|G_M|^2}{N_{tot}}\int\epsilon\cdot(1+\delta)\cdot\left[\frac{q^2}{4M_p^2}(1+\cos^2\theta_p) + R_{em}^2\sin^2\theta_p\right]d\cos\theta_p$$

For $\cos\theta_p$ within [-0.8,0.8]:

$$R = \sqrt{\frac{s}{4M_p^2} \frac{\langle \cos^2 \theta_p \rangle - 0.243}{0.108 - 0.648 \langle \cos^2 \theta_p \rangle}}$$

$$\sigma_R = \frac{0.0741}{R(0.167 - \langle \cos^2 \theta_p \rangle)^2} \frac{s}{4M_p^2} \sigma_{\langle \cos^2 \theta_p \rangle}$$

|G_M| extracted from the integral of angular differential cross section and R

e⁺e⁻ → pp Phys. Rev. D91, 112004 (2015)

70 60 50 40 40 30 20 30 30 30 30 50 10
-0.8 -0.6 -0.4 -0.2 -0.0 0.2 0.4 0.6 0.8 $\cos\theta_p$

$\sqrt{s} \; (\text{MeV})$	$ G_E/G_M $	$ G_M \ (\times 10^{-2})$	χ^2/ndf
	Fit on $\cos \theta_p$		
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	1.04
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	0.74
(3050.0, 3080.0)	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	0.61
	method of moments		
2232.4	0.83 ± 0.24	18.60 ± 5.38	-
2400.0	0.85 ± 0.37	11.52 ± 5.01	-
(3050.0, 3080.0)	0.88 ± 0.46	3.34 ± 1.72	_

- \rightarrow R = $|G_{_{\rm F}}|/|G_{_{\rm M}}|$ consistent with 1
- \rightarrow $|G_{M}|$ (and $|G_{E}|$) extracted for first time
- Precision between 11% and 28%
- Strong tension between Babar and PS170

Prospects fore te → pp

About 650 pb⁻¹ collected in 22 scan points between 2.0 – 3.08 GeV in 2015

Applying similar selection criteria as in previous analysis to MC samples of expected size, we expect:

^(*) Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on BaBar's results.

Prospects for $e^+e^- \rightarrow pp$: $\sigma(pp)$

- → Unprecedented accuracies above 2.0 GeV Expected accuracies between 0.5% (2.125 GeV) and 26% (2.8 GeV) and improving all measurements so far
- → Also data samples collected around 'steps' observed by BaBar (2.2 and 3.0 GeV) to check this observation

^(*) Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on BaBar's results.

Prospects for $e^+e^- \rightarrow pp$: $\sigma(pp)$, G

$$|G(q^2)| = \sqrt{\frac{\sigma^{\text{Born}}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi\alpha^2\beta C}{3q^2})}}$$

→ Expected accuracies **between 0.3%** (2.125 GeV) **and 13%** (2.8 GeV) and improving all measurements so far

^(*) Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on BaBar's results.

Prospects for $e^+e^- \rightarrow p\overline{p}$: R, $|G_{E,M}|$

16 scan points between 2.0 and 3.08 GeV with enough statistics for angular

analysis:

→ Comparable accuracies in SL and TL regions for similar Q² values

^(*) Babayaga phase: modified Babayaga v3.5 with ppbar differential cross section for the ppbar channel with R=1 and $|G_m| = 22.5(1+q^2/0.71)^{-2} (1+q^2/3.6)^{-1}$ like in [Phys.Lett.B504,291]

Proton FFs from radiative return (ISR)

Data samples for $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

BESIII: World largest Psi(3770), Psi(4040), Y(4260), Y(4360), Y(4420), Y(4600) produced directly in e+e- collisions

$e^+e^- o p\overline{p}\gamma_{\rm ISR}$	BESIII	BaBar
$\sqrt{s} \; (\text{GeV})$	3.77 - 4.6	10.57
$\sigma^{ m ISR}$ (nbarn)	$\sim 8 \times 10^{-3}$	$\sim 0.7 imes 10^{-3}$
$L({ m fb}^{-1})$	7.4	500
$^{(*)}N\overline{N}$ in detector	50%	10%

- → Similar statistics as BaBar with much smaller luminosity!!
- → Why so little luminosity at threshold?

Data samples for $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

BESIII: World largest Psi(3770), Psi(4040), Y(4260), Y(4360), Y(4420), Y(4600) produced directly in e+e- collisions

$e^+e^- o p\overline{p}\gamma_{\rm ISR}$	BESIII	BaBar
$\sqrt{s} \; (\text{GeV})$	3.77 - 4.6	10.57
$\sigma^{ m ISR}$ (nbarn)	$\sim 8 \times 10^{-3}$	$\sim 0.7 imes 10^{-3}$
$L({ m fb}^{-1})$	7.4	500
$^{(\star)}\!N\overline{\mathrm{N}}$ in detector	50%	10%

- → Similar statistics as BaBar with much smaller luminosity!!
- → Why so little luminosity at threshold?
 Only tagged photon analysis
 possible

Properties of $e^+e^- \rightarrow pp\gamma_{ISR}$

 $\sqrt{s}(\text{GeV})$ = 4.230 GeV, Phokhara v9.1 simulation [arXiv:1407.7995v2]

Analysis of $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

Untagged $\gamma_{\rm ISR}$ analysis

- only pp reconstructed (41% of all events)
- ullet identification of $\gamma_{\rm ISR}$ based on missing 4-momentum

Tagged $\gamma_{\rm ISR}$ analysis

• p, \overline{p} and $\gamma_{\rm ISR}$ reconstructed (12% of all events)

Analysis of $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

Untagged $\gamma_{\rm ISR}$ analysis:

- only pp reconstructed (41% of all events)
- ullet identification of $\gamma_{
 m ISR}$ based on missing 4-momentum

$$\vec{p}_{miss} = \vec{p}_p + \vec{p}_{\overline{p}} - \vec{p}_{e^+} - \vec{p}_{e^-} \to \theta_{miss}, |\vec{p}_{miss}| > 0.2 \text{GeV/c}$$

$$M_{miss}^2 = (p_p + p_{\overline{p}} - p_{e^+} - p_{e^-})^2$$

- ightarrow Remaining ~2% background from $e^+e^-
 ightarrow p\overline{p}\pi^0$ subtracted using sidebands
- ightarrow Signal efficiency increases with q and decreases with \sqrt{s}
- \rightarrow Region accessible: $2.0 \mathrm{GeV} \le q \le 3.8 \mathrm{GeV/c}$
- (*) Phokhara v9.1 [arXiv:1407.7995v2]
- (**) BesEvtGen [Chin.Phys. C32 (2008) 599] (***) Babayaga 3.5

Analysis of e⁺e⁻ → p

Tagged $\gamma_{\rm ISR}$ analysis

- p, \overline{p} and γ_{ISR} reconstructed (12% of all events)
- $\gamma_{\rm ISR}$ is the highest energetic shower in EMC (> 0.4 GeV)
- 4-constraints kinematic fit to $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$
- π^{0} -veto: find π^{0} and apply 5C kinematic fit to $e^{+}e^{-}
 ightarrow p\overline{p}\pi^{0}$

- ightarrow Remaining 20-60% background from $e^+e^-
 ightarrow p\overline{p}\pi^0$ subtracted (MC weights)
- ightarrow Signal efficiency independent on q and decreasing slightly with \sqrt{s}
- \rightarrow Region accessible: $2m_p \le q \le 3 \text{GeV/c}$
- (*) Phokhara v9.1 [arXiv:1407.7995v2]
 (**) BesEvtGen [Chin.Phys. C32 (2008) 599]

Analysis of $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

Data samples: ψ",ψ(4040), Y(4230), Y(4260), Y(4360), Y(4420), Y(4600)

Total: 7.1 fb⁻¹

33

Prospects for $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$: $\sigma(p\overline{p})$, |G|

Untagged $\gamma_{\rm ISR}$ analysis:

→ Final statistics competitive with BaBar

(1) PRD87,092005(2013) (2) PRD88.072009(2013)

Tagged $\gamma_{\rm ISR}$ analysis:

- → Cross section and effective form factor measured between threshold and 3.0 GeV in same q-bin sizes as untagged analysis
- → Expected about 3 times less statistics than for untagged case

^(*) Phokhara v9.1 [arXiv:1407.7995v2]

Prospects for $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$: $R = |G_E|/|G_M|$

Angular analysis in q-intervals:

$$\frac{dN}{d{\cos}\theta_p} = A[H_M({\cos}\theta_p,q) + \frac{|G_E|^2}{|G_M|^2} H_E({\cos}\theta_p,q)]$$
 from MC with $|\mathbf{G}_{\mathrm{E}}| = 0$ from MC with $|\mathbf{G}_{\mathrm{M}}| = 0$

Two methods used: 2parametrs fit and method of moments

Untagged $\gamma_{\rm ISR}$ analysis:

Extraction of R at 4 q-intervals possible [2.0-2.2[,[2.2-2.4[,[2.4-2.6[,[2.6-3.0[

→ Expected stat. accuracies ~30%

(*) Phokhara v9.1 [arXiv:1407.7995v2]

Tagged $\gamma_{\rm ISR}$ analysis

Extraction of R at 6 q-intervals possible:

[1.876-1.950[,[1.950-2.025[, [2.025-2.1[,[2.1-2.2[,[2.2-2.4[,[2.4-3.0[

→ Expected stat. accuracies between 20% and 65% (as q increases)

Neutron FFs from direct annihilation (scan)

Detection of Neutrons in BESIII

EMCalorimeter

CsI(TI): $15X_0$, $\lambda_1 = 171.5 \text{ g/cm}^2$, $\rho = 4.53 \text{ g/cm}^3$ $P_{n,n} = 52\%$

MUC

Iron + resistive plates $\lambda_1 = 132.1 \text{ g/cm}^2$, $\rho = 7.874 \text{ g/cm}^3$ 56 cm Fe thickness in barrel $P_{n,n} = \sim 96 \text{ %}$

TOF

2 Plastic scintillator layers BC408 Total width: 10 cm Assuming p = 0.6 GeV/c $\sigma(pn)$ = 1.5 ·10² mb $\sigma(pn)$ = 0.4 ·10² mb N_H = 5.23 ·10²²/cm3 N_C = 4.74 ·10²²/cm3 N_C = 55%, P_n =13.5%

Analysis of e⁺e⁻ → nn

Current analysis based only on **EMC information** and final state kinematics

Challenges:

Particle identification

- Only ~50% or n, n̄ interact with EMC
- Energies of n, n not fully deposited in EMC
- Many secondary showers created → shower reconstruction very difficult
- Annihilation star makes it difficult to reconstruct back to back signature

Background

- large neutral backgrounds with photons $(\sigma(e^+e^- \to \gamma\gamma) >> \sigma(e^+e^- \to n\bar{n})), K_L, \dots$
- huge background from beam associated processes

Trigger

lower trigger efficiencies for purely neutral channels

Analysis of e⁺e⁻ → nn

Analysis strategy:

- more than 1 shower in EMC and no charged tracks in MDC
- first identify \overline{n} :

highest energetic shower (0.5 GeV up to $E_{\rm CM}/2 + m_{\rm n}$) energy deposited in 40° cone number of hits in 40° cone second moment of crystals in a shower

- then neutron identification:
 shower energy (smaller than for n)
 most back to back shower to n
- cuts against background
 back to back signature between n and n
 no extra energy in EMC (not associated to n or n)
 reject low and large polar angles of n and n

Background status

- Physics background negligible
- Beam background: studied with separated beam samples

Analysis of e⁺e⁻ → nn

Prospects for $e^+e^- \rightarrow nn$: $\sigma(nn)$, G, R...

$$\sigma^{\text{Born}}(q) = \frac{N_{\text{obs}(q)} - N_{\text{bg}(q)}}{L \cdot \epsilon(q) R(q)}$$

$$|G(q^2)| = \sqrt{\frac{\sigma^{\text{Born}}(q^2)}{(1 + \frac{2M^2}{q^2})(\frac{4\pi\alpha^2\beta\mathscr{L}}{3q^2})}}$$

- \rightarrow Unprecedented statistics above 2.0 GeV Expected $\sigma(n\overline{n})$ accuracies between 6% (at 2.396 GeV) and 13% (at 3.0 GeV)
- \rightarrow First measurement of R and $|G_{_{M}}|$ (and $|G_{_{E}}|)$ will be probably be possible at 2.396 GeV
- → Current selection efficiencies (1% level) will be enhanced with the use of MUC and TOF detectors in the analysis

^(*) Phokhara v9.1 [arXiv:1407.7995v2]. Default model based on SL and TL region measurements on neutron Ffs and $\sigma(n\bar{n})$

Summary

Summary & Outlook

- BESIII excellent laboratory for Nucleon form factor measurements: energy scan
 + initial state radiation
- First results on Proton Form Factors used a fraction of available scan data
- High statistics energy scan between 2.0 and 3.08 GeV will significantly improve Nucleon's FFs measurements

Protons: $\delta R/R = 3 - 35\%$, $\delta |Gm|/|Gm| = 1 - 9\%$

→ Perhaps sensitive to two-photon exchange?

Neutrons: $\delta \sigma / \sigma = 6 - 13\%$, $\delta |G|/|G| = 3 - 7\%$ or even better

→ First measurement of R in the time-like region

Data from 2011 and 2012 will also be added

• Very exciting results from **ISR** on proton FFs expected very soon. Statistics similar to BaBar with only 7.4 fb⁻¹!

BESIII will keep on collecting high statistics at the main resonances → more statistics for ISR studies!

A new crystal zero degree detector will also enlarge ISR photon acceptance region

Backup

Analysis of $e^+e^- \rightarrow n\overline{n}\gamma_{ISR}$

Same challenges as for $e^+e^- \rightarrow n\overline{n}$ and more!

Detection of ISR photon needed for binning in q^2 $(q^2 = M_{n\overline{n}})$

Only **tagged analysis in EMC** possible (no identification through 4-momentum conservation)

Additional backgrounds:

$$e^+e^- \rightarrow nn\pi^0(\eta), e^+e^- \rightarrow \gamma\gamma(\gamma)...$$

Analysis of $e^+e^- \rightarrow n\overline{n}\gamma_{ISR}$

Analysis strategy:

- Energy deposition in EMC:
 - EgammaISR has a sharp maximum
 - n has large energy deposition
 - n has small energy deposition
- Shape of e.m. Showers in EMC:
 - Gamma ISR has narrow shower shape n and n have wider shower shapes
- Event kinematics:
 - back to back signature between nn-system and $\gamma_{\rm ISR}$ in e^e-CMS
 - n and \overline{n} back to back in $e^+e^-\gamma_{ISR}$ -rest frame

Background status

Only $e^+e^- \rightarrow n\overline{n}\pi^0(\eta)$, $e^+e^- \rightarrow \gamma\gamma(\gamma)$ still present \rightarrow Multi Variate Analysis with MC signal and bg validated with data

Analysis of $e^+e^- \rightarrow n\overline{n}\gamma_{ISR}$

Analysis strategy:

Energy deposition in EMC:

EgammalSR has a sharp maximum

n has large energy deposition

Problem: selection efficiencies at the 1% level!!

→ The use of TOF and MUC detectors in the analysis will definitely help!!

III C C CIVIC

n and \overline{n} back to back in $e^+e^-\gamma_{ISR}$ -rest frame

Background status

Only $e^+e^- \rightarrow n\overline{n}\pi^0(\eta)$, $e^+e^- \rightarrow \gamma\gamma(\gamma)$ still present \rightarrow Multi Variate Analysis with MC signal and bg validated with data

BESIII data taking status & plan (run ~8 years)

	Previous data	BESIII present & future	Goal
J/ ψ	BESII 58M	1.2 B 20* BESII	10 B
ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm threshold	CLEO: 0.6/fb @ ψ(4160)	0.5/fb @ ψ(4040) 2.3/fb@~4260, 0.5/fb@4360 0.5/fb@4600, 1/fb@4420	5-10 /fb
R scan & Tau	BESII	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)		100 pb⁻¹ (2015)	
ψ(4170)		3 fb⁻¹ (2016)	

Peak luminosity achieved 9.98×10³² cm⁻² s⁻¹

BESIII detector performance

	MDC	MDC	EMC
Expt.	Wire	dE/dx	Energy
	resolution	resolution	resolution
CLEO	110 μm	5%	2.2 - 2.4%
BABAR	$125\mu\mathrm{m}$	7%	2.67%
Belle	$130 \mu \mathrm{m}$	5.6%	2.2%
BESIII	115 μm	< 5%	2.3%

- 2015: Installation of new ETOF modules (MRPC, $\sigma_t \sim 60 \, \mathrm{ps}$)
- Cylindrical GEM (CGEM) detector to replace inner part of MDC (Italy, IHEP, Germany, Sweden)
- Small-angle electron/photon tagger

	TOF
Expt.	time
	resolution
CDF	100 ps
Belle	90 ps
BESIII	68 ps (Barrel) 100 ps (ETOF)

ISR vs scan data: luminosity

Data in TL region

FENICE

Direct production

$$e^+e^- \to B\overline{B}$$

[arXiv:1210.4689v1]

١	Exp.	Reaction	Publ.	Points	Range [GeV]	$[\mathbf{p}\mathbf{b}^{-1}]$	Events	Ref.
	DM1	$e^+e^- o par{p}$	1979	4	1.925 - 2.180	0.4	~ 70	[14]
	DM2	$e^+e^- o par p$	1983	6	1.975 - 2.25	0.5	~ 100	[15]
	DM2	$e^+e^- o par p$	1990	1	2.4	0.2	7	[16]
	DM2	$e^+e^- ightarrow \Lambda ar{\Lambda}$	1990	1	2.4	0.2	4	[16]
	ADONE 73	$e^+e^- o par{p}$	1973	1	2.1	0.2	25	[11]
	FENICE	$e^+e^- o nar{n}$	1993	2	2.0 - 2.1	< 0.1	27	[19]
	FENICE	$e^+e^- o par p$	1993	1	2.1	0.1	28	[19]
	EENICE	a+a- \m =	1004	1	10 94	0.2	70	[19]

Aqui falta SND

LEMICE	$e^+e^- \rightarrow nn$	1990	0	1.9 - 2.44	0.4	14	
FENICE	$e^+e^- o par{p}$	1998	1	2.1	< 0.1	7	
BES-II	$e^+e^- o par{p}$	2005	10	2.0 - 3.07	5	80	Г
CLEO	$e^+e^- o par{p}$	2005	1	3.671	21	16	
SND	$e^+e^- \to n\overline{n}$	2014	11	1.8-2.0	10	~5000	
BES3		2015	12	2.2324 - 3.671	157	~1370	
CMD3	$e^+e^- \rightarrow p\overline{p}$	2015	12	1.885 -2.0023	6.8	~2700	

 $e^+e^- \rightarrow n\bar{n}$ 1008

PRD90,112007(204)

PRD91,112004(2015) Arxiv:1507.08013v2 (2015)

Annihilation

$$p\overline{p} \to e^+e^-$$

Exp.	Reaction	Year Publ.	Scan Points	Range (CoV)		Ref.
M.S.T. Coll.	$p ar p o e^+ e^-$	1976/77	2	near threshold	34	[22]
PS170	$p ar p o e^+ e^-$	1991	4	near threshold	~ 2000	[23]
PS170	$par p o e^+e^-$	1991	4	1.94 - 2.05	~ 1300	[24]
PS170	$par p o e^+e^-$	1994	9	threshold - 2.05	~ 2000	[10]
E760	$n\bar{n} \rightarrow e^+e^-$	1003	3	30-36	20	[25]

$e^+e^- \to B\overline{B}\gamma$

Exp.	Reaction	Year Publ.	Mass Binning	Range [GeV]	$egin{aligned} \mathcal{L}_{\mathrm{int}} \ [\mathbf{p}\mathbf{b}^{-1}] \end{aligned}$	Events	Ref.
BaBar	$e^+e^- o par p$	2005	47	threshold - 4.5	$232 \cdot 10^{3}$	4025	[9]
BaBar	$e^+e^- o \Lambda ar{\Lambda}$	2007	12	threshold - 3.0	$232 \cdot 10^3$	138	[28]
BaBar	$e^+e^- o\Lambdaar{\Sigma^0}$	2007	4	threshold - 2.9	$232 \cdot 10^3$	24	[28]
BaBar	$e^+e^- o \Sigma^0 ar{\Sigma^0}$	2007	5	threshold - 3.0	$232 \cdot 10^3$	18	[28]
BELLE	$e^+e^- o \Lambda_c^+ \Lambda_c^-$	2008	50	threshold - 5.4	$659 \cdot 10^{3}$	not cited	[29]

BaBar $e^+e^- \to p\overline{p}$ 2013 38 threshold – 4.5 469·10³ ~6800 PRD87,092005(2013) BaBar $e^+e^- \to p\overline{p}$ 2013 8 3.0 – 6.5 469·10³ ~100 PRD88,072009(2013)

e⁺e⁻ → pp Phys. Rev. D91, 112004 (2015)

Extraction of $\sigma^{Born}(ee \rightarrow p\overline{p})$ for each scan point:

$$\sigma^{\text{Born}}(q) = \frac{N_{\text{obs}(q)} - N_{\text{bg}(q)}}{L \cdot \epsilon(q)R(q)}$$

- Efficiencies between 60% and 3% (ConExc)
- Radiative corrections up to LO in ISR (ConExc)
- Normalization to e⁺e⁻→e⁺e⁻, e⁺e⁻→ γγ (Babayaga 3.5)

$\sqrt{s} \; (\text{MeV})$	$N_{ m obs}$	$N_{ m bkg}$	ε' (%)	$L ext{ (pb}^{-1})$	$\sigma_{ m Born} \; (m pb)$	$ G \ (\times 10^{-2})$
2232.4	614 ± 25	1	66.00	2.63		$16.10 \pm 0.32 \pm 0.35$
2400.0	297 ± 17	1	65.79	3.42	$132.7 \pm 7.7 \pm 8.1$	$10.07 \pm 0.29 \pm 0.31$
2800.0	53 ± 7	1	65.08	3.75	$21.3 \pm 3.0 \pm 2.8$	$4.45 \pm 0.31 \pm 0.29$
3050.0	91 ± 10	2	59.11	14.90	$10.1 \pm 1.1 \pm 0.6$	$3.29 \pm 0.17 \pm 0.09$
3060.0	78 ± 9	2	59.21	15.06	$8.5\pm1.0\pm0.6$	$3.03 \pm 0.17 \pm 0.10$
3080.0	162 ± 13	1	58.97	30.73	$8.9\pm0.7\pm0.5$	$3.11 \pm 0.12 \pm 0.08$
3400.0	2 ± 1	0	63.34	1.73	$1.8\pm1.3\pm0.4$	$1.54 \pm 0.55 \pm 0.18$
3500.0	5 ± 2	0	63.70	3.61	$2.2\pm1.0\pm0.6$	$1.73 \pm 0.39 \pm 0.22$
3550.7	24 ± 5	1	62.23	18.15	$2.0\pm0.4\pm0.6$	$1.67 \pm 0.17 \pm 0.23$
3600.2	14 ± 4	1	62.24	9.55	$2.2\pm0.6\pm0.9$	$1.78 \pm 0.25 \pm 0.35$
3650.0	36 ± 6	4	61.20	48.82	$1.1\pm0.2\pm0.1$	$1.26 \pm 0.11 \pm 0.07$
3671.0	6 ± 2	0	51.17	4.59	$2.2\pm0.9\pm0.8$	$1.84 \pm 0.37 \pm 0.33$

Gain From Raw Data Analysis

From raw data: TOF and MUC information for neutrals

M. Ablikim et al. / Nuclear Instruments and Methods in Physics Research A 614 (2010) 345-399

(a) BESIII detector

- What do we hope to achieve with these two subdetectors?
 - \rightarrow More statistics: drop tagging the neutron, tag only \overline{n} (and γ_{ISR})
 - \rightarrow Suppress bg: γ 's are faster than \overline{n} and don't reach MUC

Detect Cosmic Rays With MUC

Fig. 1. The illustration of one cosmic ray goes through the BESIII detecter.

One Method To Use MUC As \overline{n} Detector

- Not possible for hits in 2 even layers (only MuC Φ-position)
- For hits in 2 odd layers (only MuC z-position) we have at least the Φ-position of segment → need to be studied!
- But if we detect MUC hits in odd and even layer:
 - → Linear fit through MUC signal, EMC shower and Vertex
 - \rightarrow If no signal from n, this should be enough to select signal

Proposal: The Crystal Zero Degree Detector An Alternative

crystals

(option: $PbWO_4$)

flash ADC

realtime event correlation

PbWO₄

density $8.28 g/cm^3$

radiation length 0.89 cm

Moliere radius 2.00 cm

 τ_1 (fast component, 97%) 6.5 ns

 τ_2 (slow component, 3%) 30.4 ns

relative lightyield 0.6% at 20°C

compared to Nal 2.5% at $-25^{\circ}C$

Spatial considerations

- ISR peaked at $\theta = 0^{\circ}$ and $180^{\circ} \Rightarrow$ position of detector
- Limited space ⇒ compact design
- Bremsstrahlung even stronger peaked towards $\theta = 0^{\circ}$ and $180^{\circ} \Rightarrow$ small gap

Geometry

- Similar layout as ZDD

 (2 blocks divided by a
 1 cm gap)
- 3 × 4 crystals per block
- $1 \times 1 \times 14$ cm³ crystals

- Maximum of ISR distribution out of acceptance
- Note: log-scale!
- But: reduction of bremsstrahlung

Pion FF in BESIII

$e^+e^- \rightarrow \pi^+\pi^-\gamma_{\kappa}$

arXiv:1507.08188 (submitted to PLB)

• Goal: hadronic vacuum polarization contribution to $a_{\mu} = \frac{(g_{\mu}-2)}{2}$

$$q_{\mu}^{SM} = q_{\mu}^{QED} + q_{\mu}^{weak} + q_{\mu}^{hadr}$$

 \rightarrow most relevant contribution to α_{μ}^{hadr} below 1 GeV: $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

$$|F_{\pi}|^2(q^2) = rac{3q^2}{\pi lpha^2 eta^3} \sigma^{dressed}_{\pi^+\pi^-}(q^2)$$

Disagreement between existing measurements limits knowledge of a

- Features of BESIII analysis:
 - 2.9 fb-1 from Ψ(3770)
 - studied range between 600 900 MeV
 - only tagged analysis possible below 1 GeV
 - ∘ main background from $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$ prefectly understood (<1%)
 - luminosity from BhaBha events → 0.5% accuracy (Babayaga NLO)
 - FF fit function: Gounaris-Sakurai parametrization
 - radiative corrections from Phokhara v8.0

Syst. uncertainty in cross section 0.9%

Compatible with prev. measurements (1σ)

More than 3σ deviation wrt $(g_{\mu}-2)^{SM}$ prediction confirmed Data from untagged analysis and above $\Psi(3770)$ will be used Analysis will be extended below 600 MeV and above 900 MeV

Hyperon EM FFs in BESIII

$e^+e^- \rightarrow \Lambda\Lambda$ (BESIII Preliminary!!)

Based on 40.5 pb⁻¹ collected in 4 scan points between 2.2324 – 3.08 GeV in 2012

• at E_{CM} = 2.2324 GeV (1 MeV from threshold!!)

From $\Lambda \to p\pi^-$ and $\bar{\Lambda} \to \bar{p}\pi^+$ (BR_{pπ} = 64%)

 \circ well defined $p_{\pi_{+}}$ and $p_{\pi_{-}}$ and possible \overline{p} -annihilation

From
$$\Lambda \rightarrow \overline{n}\pi^0$$
 (BR_{n\pi0} = 36%)

- \bar{n} -annihilation and well defined $p_{\pi 0}$
- at $E_{CM} \ge 2.4$ GeV, from $\Lambda \to p\pi^-$ and $\overline{\Lambda} \to \overline{p}\pi^+$
 - ο p, \overline{p} , $\overline{\pi}$ and $\overline{\pi}$ from interaction vertex, in time, $\Lambda \overline{\Lambda}$ back to back, $E_{\Lambda \overline{\Lambda}} = E_{CM}/2$...

Results:

$\sqrt{s} \; (\text{GeV})$	Channel	$\sigma^{\mathrm{Born}}(\mathrm{pb})$	$ G \ (\times 10^{-2})$
2.2324	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$	$325 \pm 53 \pm 46$	
	$\overline{\Lambda} ightarrow \overline{n} \pi^0$	$300\pm100\pm40$	
	combined	$318 \pm 47 \pm 37$	$63.2 \pm 4.7 \pm 3.7$
2.4000	$\Lambda \to p\pi^-, \overline{\Lambda} \to \overline{p}\pi^+$	$133 \pm 20 \pm 19$	$12.9 \pm 1.0 \pm 0.9$
2.8000		$15.3 \pm 5.4 \pm 2.0$	$4.2\pm0.7\pm0.3$
3.0800		$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ (BESIII Preliminary!!)

No Coulomb term for neutral baryon pairs → cross section should vanish at threshold

$$\sigma^{Born}(q^2) = \frac{4\pi\alpha^2\beta}{3q^2} \left[|G_M(q^2)|^2 + \frac{2M^2}{q^2} |G_E(q^2)|^2 \right]$$

Precision increased by at least 10% for low q² and even more above 2.4 GeV

- → Origin of unexpected behavior? Coulomb interaction at quark level?(***)
- → Precison measurement forseen by BESIII with 2015 data

*** Eur. Phys. J. A39:315-321(2009)

Prospects fore te → Hyperons

From 2015 scan full determination of lambda- FFs possible:

• Imaginary part of FFs leads to polarization observables:

Parity violating decay: $\Lambda \rightarrow p\pi$

$$\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_\Lambda P_n \cos\theta_p \quad \text{and} \quad P_n = -\frac{\sin 2\theta \sin \Delta\phi / \tau}{R\sin^2\theta / \tau + (1 + \cos^2\theta) / R} = \frac{3}{\alpha_\Lambda} \langle \cos\theta_p \rangle$$

$$\Theta_\rho : \text{Angle between proton}$$

$$\text{and polarization axis in Λ-CM}$$

$$\Theta_\rho : \text{relative phase between G_E and G_M}$$

Expected statistical accuracies for P_n between 6 and 17%

Expected statistical accuracies for $R_{em} = |G_{E}|/|G_{M}| = 1$ between 14 and 29%

• Also available from threshold (2015, 2014, 2011 data):

$$ee \to \Lambda \overline{\Sigma^0}, \, \overline{\Sigma^0} \Sigma^0, \overline{\Sigma^-} \Sigma^+, \overline{\Sigma^+} \Sigma^-, \, \overline{\Xi^0} \overline{\Xi^0}, \, \overline{\Xi^+} \overline{\Xi^-}, \, \overline{\Omega^+} \Omega^-, \, \overline{\Lambda^-_c} \Lambda^+_c$$

measurements of effective FF and $R_{\rm em}$ and $P_{\rm n}$ at single energy points possible

ee $\to \Lambda \overline{\Sigma^0}$, $\Sigma^{\overline{0}} \overline{\Sigma^0}$ previously measured by BaBar, no R_{em} extraction possible

measurements of effective FF R_{em} and $|G_{M}|$ at threshold possible

