Recent Charmonium Results from BESIII

Yuping Guo

(for BESIII Collaboration)

Nankai University & Institute of High Energy Physics

The 24th Rencontres de Blois, 27th May – 1st Jun, 2012

Outline

- Introduction of BEPCII and BESIII
- Results presented in this talk:
 - h_c: the singlet 1P state discovered most recently, new measurements of the properties and the production
 - $-\eta_c$: the lightest charmonium state, precision measurement of the properties and the distorted lineshape
 - $-\eta_c$: first observation in charmonium transitions and new decay mode study
 - Magnetic dipole component of $\psi' \rightarrow \gamma \chi_{c2}$
- Summary

BEPCII and **BESIII**

BEPCII: double-ring

Beam energy: 1-2.3 GeV Designed Luminosity:

 $1 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$

Optimum energy: 1.89 GeV

Energy spread: 5.16×10^{-4}

No. of bunches: 93

Bunch length: 1.5 cm

Total current: 0.91 A

BESIII detector:

Helium-based drift chamber:

0.5% @ 1 GeV/c, $dE/dx \sim 6\%$

TOF: 80 ps (barrel), 110 ps (endcap)

CsI EM calorimeter:

~2.5% (barrel), ~5% (endcaps) @ 1GeV

1T Superconducting magnet

Muon system: 9 layers of RPC

BESIII data samples

- 2009: 106 million ψ'
 225 million J/ψ
- 2010: $\sim 900 \text{ pb}^{-1} \text{ } \psi(3770)$
- 2011: ~1900 pb⁻¹ ψ(3770) 470 pb⁻¹ @ 4.01 GeV
- 2012: ~0.3 billion ψ' ~0.7 billion J/ ψ , started from 5th April

First e⁺e⁻ collision event at 19th July, 2008 Peak luminosity reached 0.65×10³³ @ 3.770 GeV

About $h_c(^1P_1)$

- Spin singlet P wave (S=0, L=1)
- First evidence: E835 in pp $\rightarrow h_c \rightarrow \gamma \eta_c$
- Potential model: if non-vanishing P-wave spin-spin interaction, $\Delta M_{hf}(1P) = M(h_c) \langle M(1^3P_J) \rangle \neq 0$,

where
$$< M(1^{3}P_{J}) > = [M(\chi_{c0}) + 3M(\chi_{c1}) + 5M(\chi_{c2})]/9$$

• CLEO-c observed h_c in $e^+e^- \rightarrow \psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$

$$\Delta M_{hf}(1P)=0.08\pm0.18\pm0.12 \text{ MeV}/c^2$$

(consistent with 1P hyperfine splitting = 0)

• Theoretical predictions:

-
$$B(\psi' \to \pi^0 h_c) = (0.4-1.3) \times 10^{-4}, B(h_c \to \gamma \eta_c) = 48\% \text{ (NPQCD)}$$

 $B(h_c \to \gamma \eta_c) = 88\% \text{ (PQCD)}$

Y. P. Kuang, PRD65, 094024 (2002)

- $B(h_c \rightarrow \gamma \eta_c) = 38\%$ Godfrey and Rosner, PRD66, 014012 (2002)

$\psi' \rightarrow \pi^0 h_c$ transition @ BESIII

PRL104, 132002 (2010)

Inclusive: only detect π^0 ($\psi' \rightarrow \pi^0 h_c$)

E1 tagged: detect π^0 and γ ($\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$)

Mass: 3525.40±0.13±0.18 MeV/c² Width: 0.73±0.45±0.28 MeV (<1.44 MeV @ 90% C.L.)

 $\Delta M_{hf} = M(h_c) - \langle M(^3P_J) \rangle = 0.10 \pm 0.13$ $\pm 0.18 \text{ MeV}/c^2$

Agrees with zero within ~0.5 MeV

Information on spin-spin interaction.

By combing inclusive results with E1 tagged results (First measurements)

B(
$$\psi' \rightarrow \pi^0 h_c$$
) = $(8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$
B($h_c \rightarrow \gamma \eta_c$) = $(54.3 \pm 6.7 \pm 5.2)$ %

Agree with predictions of Kuang, Godfrey, Dudek, et al.

$\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$, 16 η_c exclusive decays

Simultaneous fit to
$$\pi^0$$
 recoiling mass $M(h_c) = 3525.31 \pm 0.11 \pm 0.15 \text{ MeV}/c^2$ $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25 \text{ MeV}$ $N = 832 \pm 35$ $\chi^2/\text{d.o.f.} = 32/46$

Consistent with CLEO-c exclusive $M(h_c)=3525.21\pm0.27\pm0.14 \text{ MeV}/c^2$ $N=136\pm14$ *PRL101*, 182003(2008)

η_c , the lowest lying charmonium state

- Ground state of cc system, but its properties are not well know
- The obvious discrepancy between different experimental results may due to different experimental production mechanisms
 - Charmonium radiative decay
 - Two-photon fusion or B decay
- The precision measurement of the mass can provide information on the hyperfine splitting: $M(J/\psi)$ - $M(\eta_c)$
 - Important experimental input to tests of lattice QCD

Lineshape of η_c

- CLEO-c observed a distortion of η_c lineshape in charmonium radiative decay [PRL102, 011801 (2009)]
- The lineshape of η_c from BELLE is symmetric
- The abnormal line shape is also observed in BESIII exclusive channels in $\psi' \rightarrow \gamma \eta_c$ but not in $\psi' \rightarrow \pi^0 h_c$; $h_c \rightarrow \gamma \eta_c$

η_c resonance parameters from $\psi' \rightarrow \gamma \eta_c$

arXiv:1111.0398, accepted by PRL

Simultaneous fit with modified Breit-Wigner (hindered MI) with considering **interference** between η_c and non- η_c decays

Mass and width of η_c

arXiv:1111.0398, Accepted by PRL

Mass = $2984.3 \pm 0.6 \pm 0.6$ MeV/c²

Width = $32.0 \pm 1.2 \pm 1.0$ MeV

 $\phi = 2.40 \pm 0.07 \pm 0.08$ rad or $4.19 \pm 0.03 \pm 0.09$ rad (two resolutions of the interference)

World average in PDG2010 uses earlier measurements.

η_c'

- First "observation" by Crystal Ball in 1982 with $\psi' \rightarrow \gamma X$, but never confirmed by other experiments.
- Observed in different processes other than radiative transition
 - $B \rightarrow K \eta_c$
 - $-\gamma\gamma \rightarrow \eta_c \rightarrow KK\pi$
 - double charmonium production

Belle: PRL89 102001 (2002)

CLEO-c: PRL92 142001 (2004)

Belle: NPPS.184 220 (2008); PRL98 082001 (2007)

BarBar: PRL92 142002 (2004); PRD72 031101 (2005)

BarBar: PRD84 012004 (2011)

• The M1 transition $\psi' \rightarrow \gamma \eta_c'$ has not been observed. (experimental challenge: search for photons with energy around 50 MeV)

Observation of $\psi' \rightarrow \gamma \eta_c'$

BESIII preliminary

• Simultaneous fit with:

Statistical significance $> 10\sigma$

- η_c ' signal: modified BW (M1) (Resolution extrapolated from χ_{cJ})
- χ_{cJ} signal: MC shape smeared with Gaussian
- BG from $e^+ e^- \rightarrow KK\pi$ (ISR), $\psi' \rightarrow KK\pi$ (FSR), $\psi' \rightarrow \pi^0 KK\pi$: are measured from data

Preliminary results on $\psi' \rightarrow \gamma \eta_c' \rightarrow \gamma KK\pi$

BESIII preliminary

•
$$M(\eta_c') = 3637.6 \pm 2.9 \pm 1.6 \text{ MeV}/c^2$$

• $\Gamma(\eta_c') = 16.9 \pm 6.4 \pm 4.8 \text{ MeV}$

• Br(
$$\psi' \rightarrow \gamma \eta_c' \rightarrow \gamma KK\pi$$
)=(1.30±0.20±0.30) ×10⁻⁵

$$Br(\eta_c' \to KK\pi) = (1.9 \pm 0.4 \pm 1.1)\%$$
 from BaBar

$$Br(\psi' \to \gamma \eta_c') = (6.8 \pm 1.1 \pm 4.5) \times 10^{-4}$$

CLEO-c: $<7.6\times10^{-4}$ (PRD81,052002(2010))

Potential model: (0.1-6.2)×10⁻⁴ (*PRL89*,162002(2002))

Search for $\eta_c' \rightarrow VV (V = \rho, K^*, \phi)$

PRD84 091102 (2011)

Test for the "intermediate charmed meson loops" to evade helicity selection rule.

No obvious η_c ' signals in decays into vector pairs; the upper limit smaller than the lower bounds of theoretical predictions.

Higher multipoles in $\psi' \rightarrow \gamma \chi_{c2}$

- $\psi' \rightarrow \gamma \chi_{c2}$ is dominated by electric dipole (*E1*) transition, but expect some magnetic quadrupole component (*M2*)
- M2 amplitude provides sensitivity to charm quark anomalous magnetic moment κ
 - Expect $M2 = 0.029(1+\kappa)$
- Use large clean samples of $\chi_{c2} \rightarrow \pi\pi$ and $\chi_{c2} \rightarrow KK$; χ_{c0} samples used as control since M2=0
- Extract *M2* using fit to full angular distribution
- Significant signal for M2 amplitude that $\frac{m}{k}$ is consistent with $\kappa=0$

PRD 84,092006(2011)

Summary

- With the world largest ψ' data sample and the good performance of the BESIII detector, several interesting results came out:
 - The branching fractions of $\psi' \rightarrow \pi^0 h_c$, $h_c \rightarrow \gamma \eta_c$ are determined, so the absolute η_c cross sections are available.
 - The resonance parameters of η_c have been measured in high precision; the interference between η_c and the non-resonant amplitudes around the η_c mass is considered for the first time.
 - η_c' was observed in ψ ' decays for the first time, and decay modes other than $KK\pi$ are studied.
 - The transition amplitude of $\psi' \rightarrow \gamma \chi_{c2}$ maybe contain the contribution from high-order multipoles.
- BESIII now has \sim 3times more ψ' , expect more results soon.