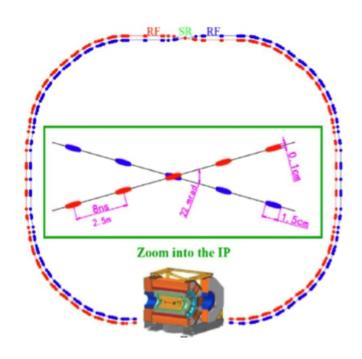


Hadron Form Factors in BESIII

Cristina Morales (Helmholtz-Institut Mainz) on behalf of **BESIII-Collaboration**


Outline:

- Experiment
- Motivation
- Nucleon Electromagnetic Form Factors
- Hyperon Electromagnetic Form Factors
- Pion Form Factor
- Summary

HADRON2015 September 13th – 18th, 2015, Newport News

BESIII@BEPCII

BESIII @ BEPCII

MDC: **main drift chamber** (He 60% + propane 40%): $\sigma(p)/p < 0.5\%$ for 1GeV tracks, $\sigma(xy) = 130 \ \mu m$ $\sigma(dE/dx)/(dE/dx) < 6\%$

TOF: time of flight (two layers plastic scintillator): $\sigma(t) \sim 90 \text{ ps}$

EMC: Cs I(TI), barrel+2 end caps:

 $\sigma(E)/E < 2.5 \%$, $\sigma(x) < 6mm$ for 1 GeV e-

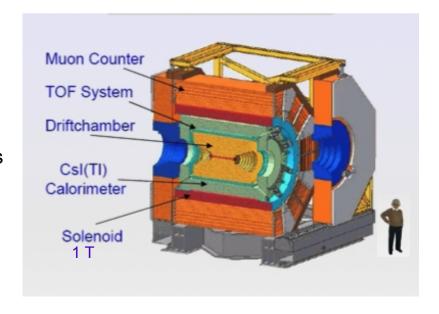
MUC: time of flight (RPC): $\sigma(xy) < 2$ cm

Double ring e+e- collider:

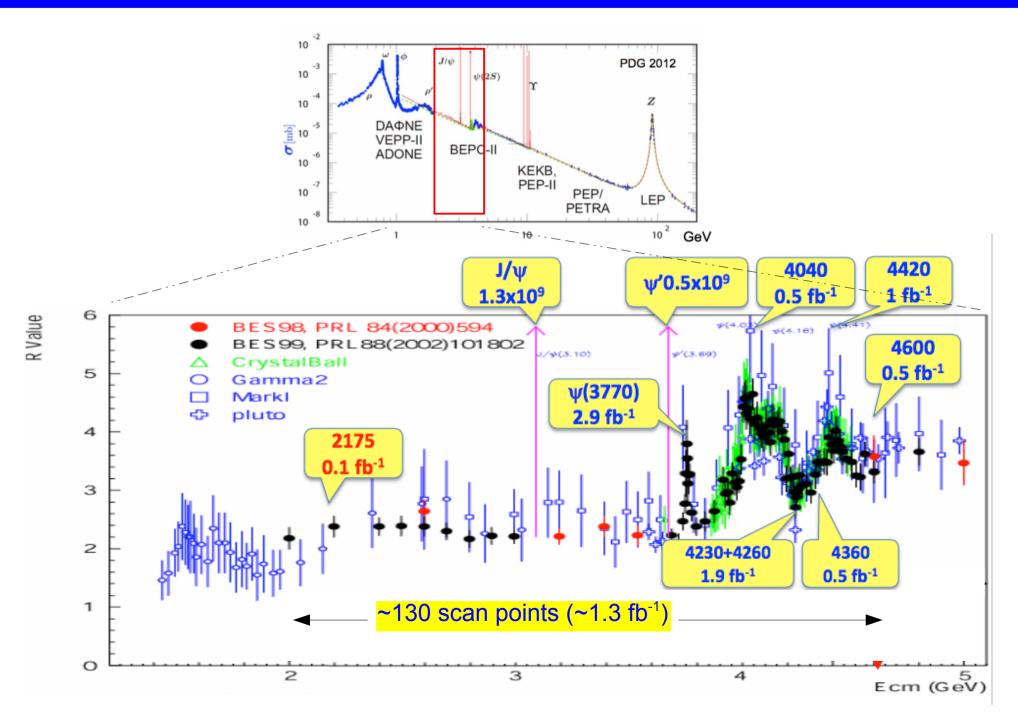
■ Beam energy: 1.0 – 2.3 GeV

Crossing angle: 22 mrad

 Design Luminosity at Ψ(3770): 10³³ cm⁻² s⁻¹ ,85% achieved

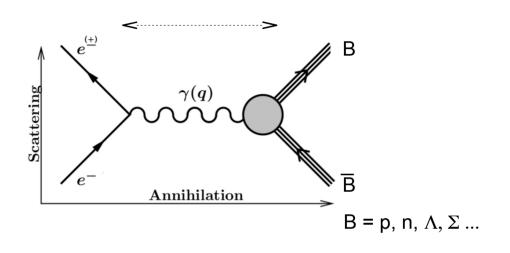

Optimum energy: 1.89 GeV

• Energy spread: 5.16·10⁻⁴


• Number of bunches: 93

Bunch length: 1.5 cm

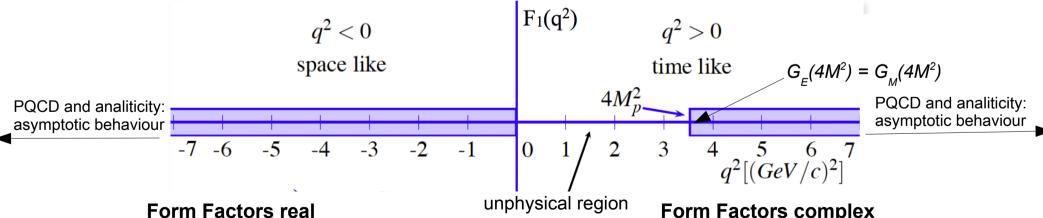
• Total current: 0.91 A


BESIII Data Samples

Motivation

Hadron Form Factors

All hadronic structure and strong interactions in form factors but subject to QED corrections Hadronic vector current: (2s+1) form factors. For baryons 2 electromagnetic FFs:


Vector current. Dirac and Pauli FFs:

$$\Gamma^\mu = \gamma^\mu F_1(q^2) + rac{i\sigma^{\mu
u}q_
u}{2M_B}F_2(q^2)$$

Sachs parametrization:

$$G_E(q^2) = F_1(q^2) + rac{q^2}{4M_B}F_2(q^2)$$

$$G_M(q^2) = F_1(q^2) + F_2(q^2)$$

cross section (Rosenbluth)

no single spin observables double spin observables

connected by dispersion relations

Form Factors complex

cross section (angular Distr.) single spin observables (P_v) double spin observables

Hadron Form Factors

• Fundamental properties of hadrons

Contain information on charge, magnetization distribution

Connected to distribution, dynamics of quarks

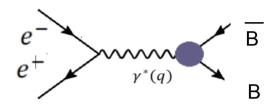
Crucial testing ground for models of hadron internal structure

Necessary input for experiments probing hadronic structure, or trying to understand modification of hadronic structure in hadronic medium

Driving renewed activity on theory side:

Models trying to explain all four EM FFs of Nucleons

Trying to explain data at both low and high q²

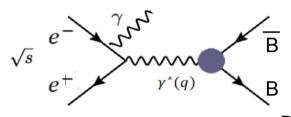

Progress on QCD based calculations

. . .

Baryon EM FFs in BESIII

• BESIII @ BEPCII: e+e- -annihilation: access to time-like form factors from

Direct annihilation



$$\sigma_{Bar{B}}^{Born}(q^2) = rac{4\pilpha^2eta C}{3q^2} \left[|G_M(q^2)|^2 + rac{1}{2 au} |G_E(q^2)|
ight]$$

Coulomb correction factor:

$$C = \frac{\pi \alpha}{\beta (1 - exp(\pi \alpha/\beta))}$$
 (if $q_B \neq 0$), $C = 1$ (if $q_B = 0$)

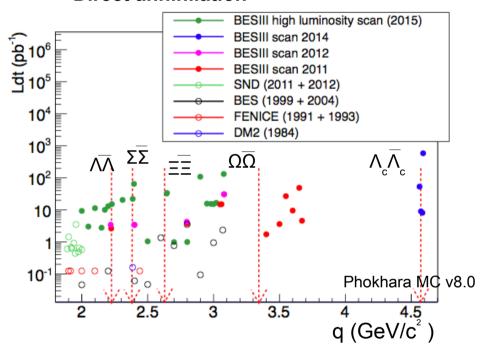
Initial State Radiation

$$\frac{d^2\sigma_{B\bar{B}\gamma}}{dxd\theta_{\gamma}} = W(s,x,\theta_{\gamma})\sigma_{B\bar{B}}^{Born}(q^2)$$

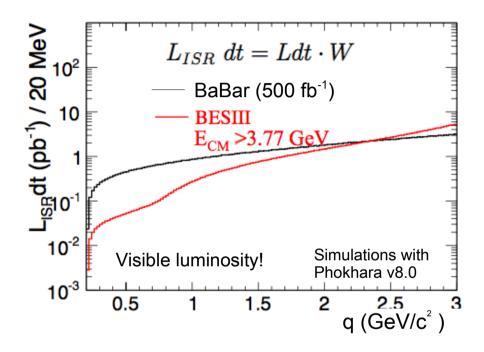
$$W_{LO}(s,x, heta_{\gamma}) = \frac{lpha}{\pi x} \left(\frac{2-2x+x^2}{\sin^2 heta_{\gamma}} - \frac{x^2}{2} \right)$$
 $x = 1 - q^2/s = 2E_{\gamma}/\sqrt{s}$

Effective form factor (assume $|G_F| = |G_M|$):

$$|G(q^2)| = \sqrt{rac{\sigma_{Bar{B}}^{Born}(q^2)}{(1+rac{1}{2 au})(rac{4\pilpha^2eta C}{3q^2})}}$$


Separation of $|G_{F}|$ and $|G_{M}|$ through angular analysis:

$$\begin{split} \frac{d\sigma_{B\bar{B}}^{Born}}{d\Omega_{CM}} &= \frac{\alpha^2\beta C}{4q^2} \left[(1+\cos^2\!\theta_B^{CM})|G_M|^2 + \frac{1}{\tau}|G_E|^2\!\sin^2\!\theta_B^{CM} \right] \\ & \text{with } \ \tau = \frac{q^2}{4M_B^2}, \beta = \sqrt{1-1/\tau} \end{split}$$


Data Samples for Hadron FFs

Data available for Hadron FFs measurements:

Direct annihilation

Initial State Radiation

Complementary approaches:

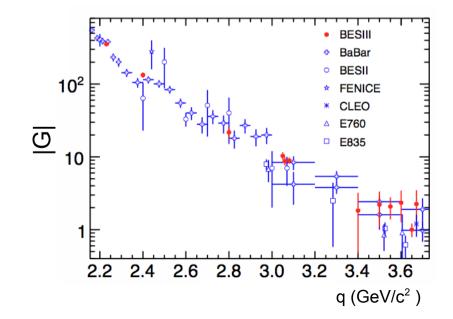
- High accuracy in q²
- High geometrical acceptance for hadron pair (93%)
- Low background

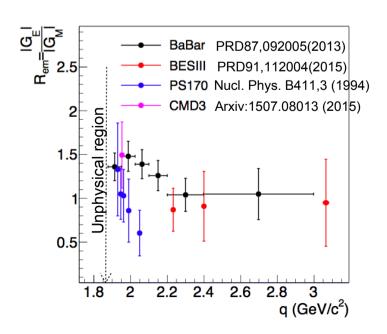
- Continuous q²-range available: m² th < q² < s
- Full angular distribution in hadronic center-of-mass
- Detection efficiency independent of q² and hadronic angular distribution
- Acceptance at threshold ≠ 0

Nucleon EM FFs in BESIII

e⁺e⁻ → pp Phys. Rev. D91, 112004 (2015)

Analysis based on 157 pb⁻¹ collected in 12 scan points between 2.22 – 3.71 GeV in 2011 and 2012


• Main features:


- o p and \overline{p} from vertex, in time, back to back, $E_{\overline{p}} = E_{\overline{CM}}/2$
- Background negligible, ~4 GeV Bhabha subtracted
- Efficiencies 60% (2.23 GeV) ... 3% (~4 GeV)
- Radiative corrections from ConExC (NLO in ISR)
- Normalization to e⁺e⁻→e⁺e⁻, e⁺e⁻→ γγ (Babayaga 3.5)

$$\begin{split} & \text{Born cross section} \\ & \sigma_{p\bar{p}}^{Born} = \frac{N_{p\bar{p}} - N_{bkg}}{L_{int} \cdot \epsilon_{\text{geom}} \cdot \epsilon_{\text{detect}} \cdot (1 + \delta_{rad})} \\ & \rightarrow \text{effective form factor} \end{split}$$

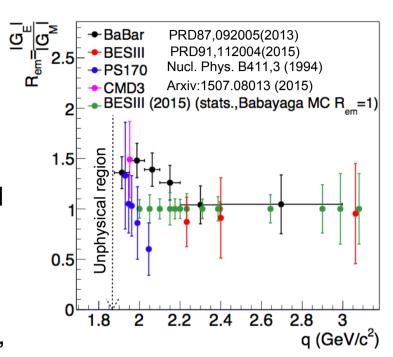
Angular analysis:
Extraction of R_{em} and
$$|\mathbf{G}_{E,M}|$$

 $\epsilon \frac{dN}{d\cos\theta_p} = N_{norm} \left[(1 + \cos^2\theta_p) + R_{em}^2 \frac{1}{\tau} \sin^2\theta_p \right]$

No steps observed in cross section. Overall uncertainty improvement by 30% $R_{em} = |G_{E}|/|G_{M}|$ and $|G_{M}|$ for three E_{CM} . R_{em} consistent with BaBar and R=1. $|G_{M}|$ extracted for first time!

Prospects for $e^+e^- \rightarrow p\overline{p}$, $p\overline{p}\gamma_{ISR}$

$$e^+e^- \rightarrow p\overline{p}$$


BESIII 2015: 21 scan points between 2.0 and 3.08 GeV (552 pb⁻¹)


- Expected statistical accuracies or R_{em}=|G_E|/|G_M|=1 between
 9 % and 35% (similar to space-like region for same q²-region)
- Expected accuracies for |G_M| between 3 to 9%, 9 to 35 % for |G_F|

$$e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \to p \overline{p} \gamma_{\scriptscriptstyle ISR}$$

Data samples (ECM): $\psi(3770), \psi(4040), 4230, 4260, 4360, 4420, 4600$. Total: 7.4 fb-1

- Analysis for each E_{CM} and q, then combine statistics
- ISR kinematics: photon and pp-system with small opposite polar angles
- Efficiencies: ~20% -γ-untagged, ~6% γ-tagged analysis
- From 2.1 GeV up untagged-photon analysis possible
- Remaining $e^+e^- \rightarrow p\overline{p}\pi^0$ subtracted from data
- Final statistics competitive with BaBar

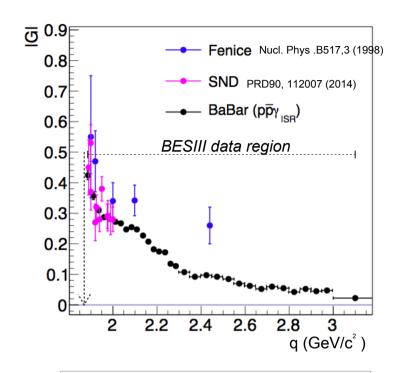
Prospects for $e^+e^- \rightarrow n\overline{n}$, $n\overline{n}\gamma_{isi}$

Only two direct measurements of neutron effective FF

BESIII data cover wide range (1.87 – 3.08 GeV) with unprecedented statistics

- → measurement of cross section and |G| in wide q²-region
- ightarrow could provide the first measurement of R $_{_{em}}$

Strategy:


- First identification of \overline{n} and γ_{ISR} : EMC shower information
- neutron identification
- event kinematics (geometry)

$e^+e^- \rightarrow n\overline{n}$

- \overline{n}/n detection efficiencies of ~20/30% (efficiencies up to % level)
- Main background from beam background processes
- Unprecedented statistics above 2.0 GeV (~300 evts at 2.4 GeV)

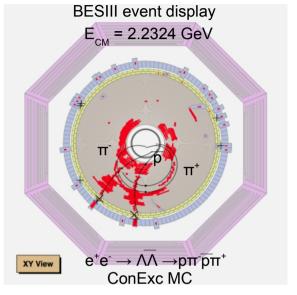
$$e^+\!e^-\to n\overline{n}\gamma_{_{ISR}}$$

- Only tagged analysis possible (efficiencies at per mille level)
- Increase detection efficiency using TOF, MUC
- Main background from $e^+e^- \to n\overline{n}\pi^0$ and $e^+e^- \to \gamma\gamma(\gamma)$ (Neural Network)

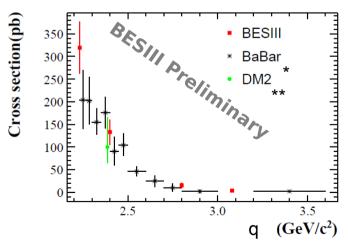
BESIII

EMC calorimeter CsI(TI): $15X_0$, $\lambda_1 = 171.5 \text{ g/cm}^2$, $\rho = 4.53 \text{ g/cm}^3$ $\rightarrow 52\% \text{ n/n}$ interact in EMC MUC: Iron + resistive plates $\lambda_1 = 132.1 \text{ g/cm}^2$, $\rho = 7.874 \text{ g/cm}^3$ 56 cm Fe thickness in barrel $\rightarrow \sim 96 \% \text{ n/n}$ interact in MUC

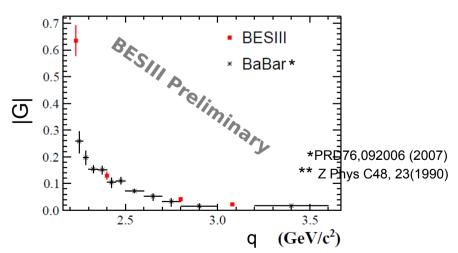
Hyperon EM FFs in BESIII


$e^+e^- \rightarrow \Lambda\Lambda$ (BESIII Preliminary!!)

Analysis based on 40.5 pb⁻¹ collected in 4 scan points between 2.2324 – 3.08 GeV in 2012 test run


- at $E_{CM} = 2.2324 \text{ GeV} (m_{\sqrt{\Lambda}}^{th} = 2.2317 \text{ GeV})$
 - From $\Lambda \rightarrow p\pi^-$ and $\overline{\Lambda} \rightarrow \overline{p}\pi^+$ (BR_{p\pi} = 64%)
 - \circ well defined p_{π} , possible \overline{p} -annihilation

From
$$\overline{\Lambda} \rightarrow \overline{n}\pi^0$$
 (BR_{n\pi0} = 36%)


- \overline{n} -annihilation in EMC (Neural Network), well defined $p_{\pi 0}$
- at $E_{CM} \ge 2.4 \text{ GeV}$, from $\Lambda \to p\pi^-$ and $\Lambda \to p\pi^+$
 - \circ p, \overline{p} , π^{-} and π^{+} from interaction vertex, in time, $\overline{\Lambda}\Lambda$ back to back, $E_{\Lambda}^{-} = E_{CM}^{-}/2$...

Current results improve uncertainty by at least 10% for low q^2 and even more for $E_{_{CM}} > 2.4~GeV$

Cross section does not vanish at threshold!!

Coulomb interaction at quark level?

Prospects fore te → Hyperons

From 2015 scan full determination of lambda- FFs possible:

• Imaginary part of FFs leads to polarization observables:

Parity violating decay: $\Lambda \rightarrow p\pi$

$$\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_\Lambda P_n \cos\theta_p \quad \text{and} \quad P_n = -\frac{\sin 2\theta \sin \Delta\phi / \tau}{R\sin^2\theta / \tau + (1 + \cos^2\theta) / R} = \frac{3}{\alpha_\Lambda} \langle \cos\theta_p \rangle$$

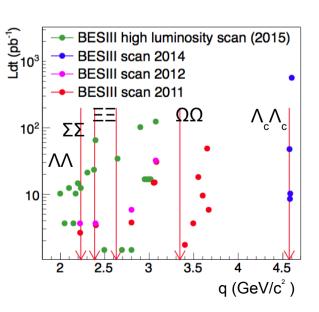
$$\Theta_\rho : \text{Angle between proton}$$

$$\text{and polarization axis in Λ-CM}$$

$$\Theta_\rho : \text{relative phase between G_E and G_M}$$

Expected statistical accuracies for P_n between 6 and 17%

Expected statistical accuracies for $R_{em} = |G_{E}|/|G_{M}| = 1$ between 14 and 29%


• Also available from threshold (2015, 2014, 2011 data):

$$ee \to \Lambda \overline{\Sigma^0}, \, \overline{\Sigma^0} \Sigma^0, \overline{\Sigma^-} \Sigma^+, \overline{\Sigma^+} \Sigma^-, \, \overline{\Xi^0} \Xi^0, \, \overline{\Xi^+} \Xi^-, \, \overline{\Omega^+} \Omega^-, \, \overline{\Lambda^-_c} \Lambda^+_c$$

measurements of effective FF and $R_{\rm em}$ and $P_{\rm n}$ at single energy points possible

ee $\to \Lambda \overline{\Sigma^0}$, $\Sigma^{\overline{0}} \overline{\Sigma^0}$ previously measured by BaBar, no R_{em} extraction possible

measurements of effective FF R_{em} and $|G_{M}|$ at threshold possible

Pion FF in BESIII

$e^+e^- \rightarrow \pi^+\pi^-\gamma_{\kappa}$

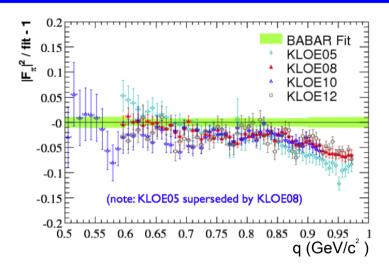
arXiv:1507.08188 (submitted to PLB)

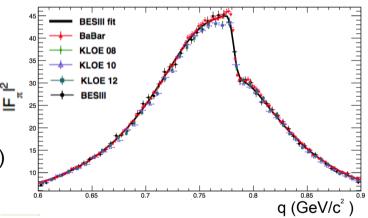
• Goal: hadronic vacuum polarization contribution to $a_{\mu} = \frac{(g_{\mu}-2)}{2}$

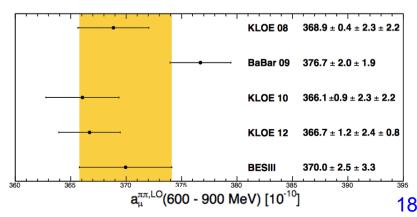
$$q_{\mu}^{SM} = q_{\mu}^{QED} + q_{\mu}^{weak} + q_{\mu}^{hadr}$$

 \rightarrow most relevant contribution to α_{μ}^{hadr} below 1 GeV: $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

$$|F_{\pi}|^2(q^2) = rac{3q^2}{\pi lpha^2 eta^3} \sigma^{dressed}_{\pi^+\pi^-}(q^2)$$


Disagreement between existing measurements limits knowledge of a

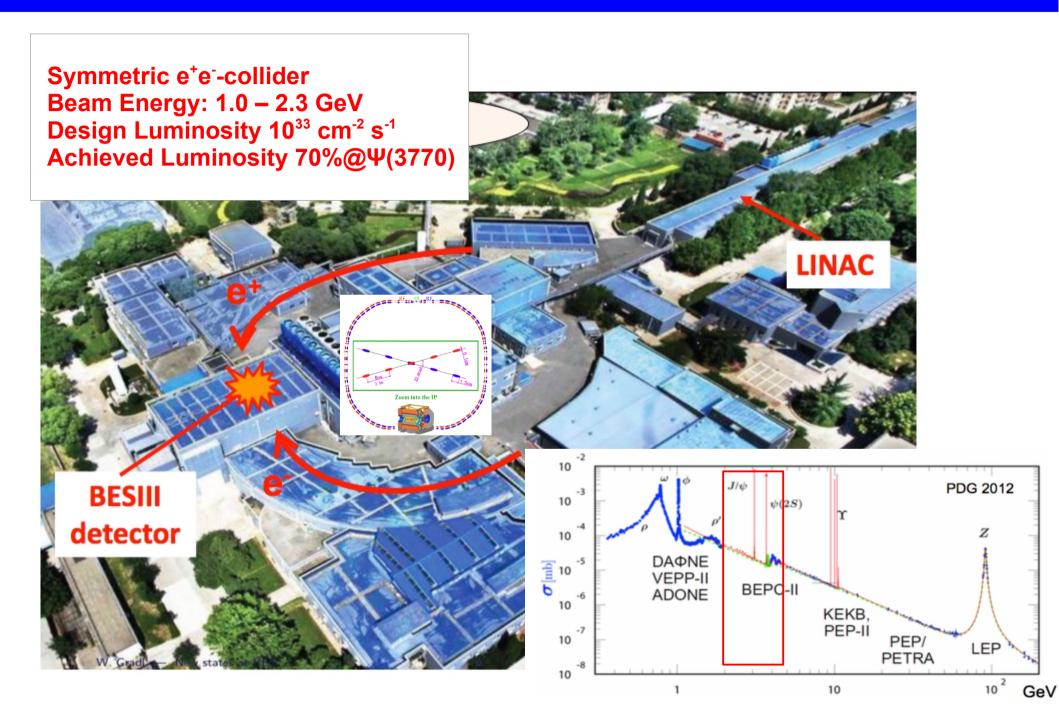

- Features of BESIII analysis:
 - 2.9 fb-1 from Ψ(3770)
 - studied range between 600 900 MeV
 - only tagged analysis possible below 1 GeV
 - ∘ main background from $e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$ prefectly understood (<1%)
 - luminosity from BhaBha events → 0.5% accuracy (Babayaga NLO)
 - FF fit function: Gounaris-Sakurai parametrization
 - radiative corrections from Phokhara v8.0


Syst. uncertainty in cross section 0.9%

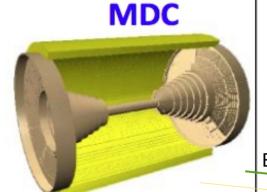
Compatible with prev. measurements (1σ)

More than 3σ deviation wrt $(g_{\mu}-2)^{SM}$ prediction confirmed Data from untagged analysis and above $\Psi(3770)$ will be used Analysis will be extended below 600 MeV and above 900 MeV

Summary

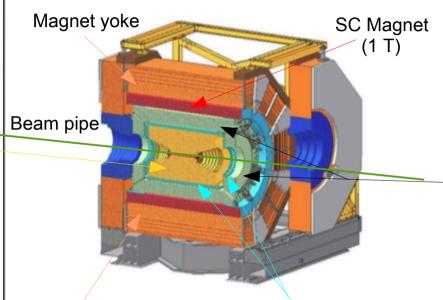

Summary & Outlook

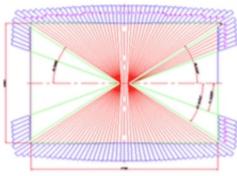
- BESIII excellent laboratory for hadron form factor measurements: scan data + ISR tecnique
- Proton Form Factors and their ratio have been measured using a small amount of data
- Preliminary results on Λ just released
- New high statistics data between 2.0 and 3.1 GeV will significantly improve FFs measurements for protons, neutrons, lambdas and other hyperons.
 Also from ISR measurements exciting results for nucleon FFs expected
- ISR technique allows access to energies below 2 GeV: the first result is the charged pion, more to come
- Other related topics being studied (not reviewed here):
 - Baryon production threshold measurements
 - \circ Space-like transition FFs of mesons (light-by-light contributions to $(g_{_{\rm u}}$ -2))


Thank you!

Backup

BEPCII Collider


BESIII Detector


R inner: 63mm R outer: 810 mm Length: 2582 mm

43 Layers

 $\sigma(p)/p = 0.5\%$ $\sigma_{dE/dx} = 6.0\%$

6240 CsI(TI) crystals: 28cm (**15X**₀)

Barrel: $|\cos\Theta| < 0.83$

Endcap: $0.85 < |\cos\Theta| < 0.93$

 $\sigma(E)/E = 2.5\%$ $\sigma_{Z,D}(E) = 0.5 - 0.7 \text{ cm}$

RPC MUC

8 – 9 layers of RPC p>400 MeV/c

 $\delta R\Phi = 1.4 \sim 1.7 \text{ cm}$

TOF

BTOF: two layers;

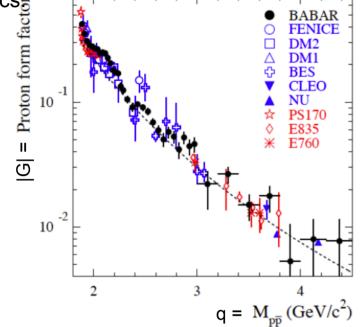
ETOF: 48 crys. for each

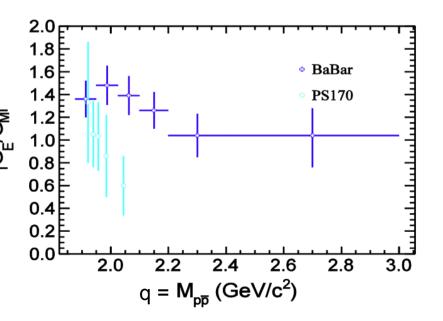
 $\sigma(t) = 80ps$ (barrel)

 $\sigma(t) = 120ps \text{ (endcap)}$

Experimental Situation: proton FFs

- - → only extraction of effective form factor, |G|, possible


Initial direct measurements of
$$\sigma_{\rm Born}$$
 (ee--> pp) had very poor statistics only extraction of **effective form factor**, |**G**|, possible
$$|\mathbf{G}| = \sqrt{\frac{\sigma_{Born}}{(1+\frac{1}{2\tau})(\frac{4\pi\alpha^2\beta C}{3E_{CM}^2})}}$$
 (Assumption: |**G**| = |**G**_E| = |**G**_M|)

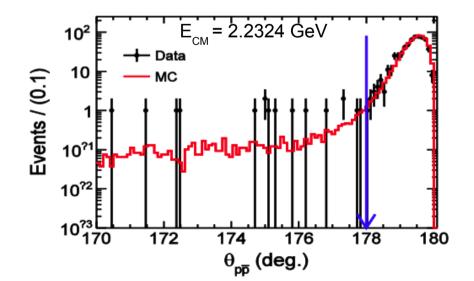

New measurements by BaBar (ISR) and pp-experiments:

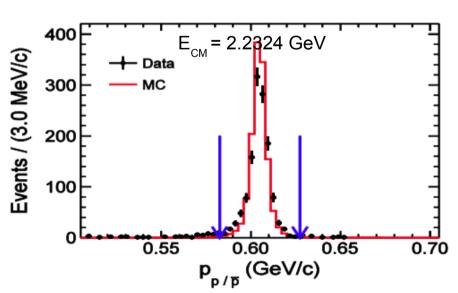
- Steep rise at threshold
- Steps near 2.25 and 3.0 GeV
- Asymptotic behavior in SL and TL regions differ:
- $|G_{M}^{TL}(10 \text{ GeV}^{2})| = 2|G_{M}^{SL}(10 \text{ GeV}^{2})|$

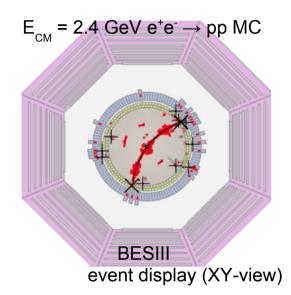
- \rightarrow extraction of $\mathbf{R} = |\mathbf{G}_{\mathbf{F}}| / |\mathbf{G}_{\mathbf{M}}|$ possible
 - Precision between 11% and 43%, (<1% precision in SL-)-
 - Strong tension between Babar and PS170
 - No individual determination of G_{E} and G_{M}

$e+e-\rightarrow p\bar{p}$ (Phys. Rev. D91, 112004)

Analysis based on 157 pb⁻¹ collected in 12 scan points between 2.22 – 3-71 GeV in 2011 and 2012


Selection:


Only 2 oppositely charged tracks in detector:


- \circ identified as p and p: dE/dx + Tof +E/p_p < 0.5
- \circ from interaction vertex: $|R_{xy}| < 1$ cm, $|R_z| < 10$ cm
- same time of flight window: |tofp tofp|< 4ns</p>
- back to back signature
- ା sharing E_{CM}
- \circ for E_{CM} > 2.4 GeV low polar angles rejected (Bhabha)

Background:

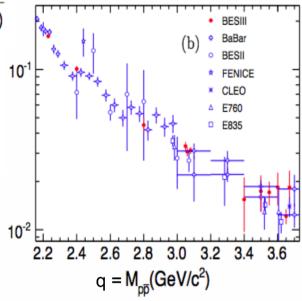
- $\,\circ\,$ Beam background, ee--> two-body and multi-body with p and p \to negligible
- Only remaining Bhabha at E_{CM} > 3.40 GeV corrected for

$e+e-\rightarrow p\bar{p}$ (Phys. Rev. D91, 112004)

- Results:
 - $_{\text{Born}}$ (ee--> pp) measurement, extraction of effective form factor, |G| :

$$\sigma_{\mathrm{Born}} = \frac{N_{\mathrm{obs}} - N_{\mathrm{bkg}}}{L \cdot \varepsilon \cdot (1 + \delta)} \quad |\mathbf{G}| = |\mathbf{G}_{\mathbf{E}}| = |\mathbf{G}_{\mathbf{M}}| \qquad |\mathbf{G}| = \sqrt{\frac{\sigma_{Born}}{(1 + \frac{1}{2\tau})(\frac{4\pi\alpha^2\beta C}{3E_{CM}^2})}}$$

 N_{obs} : observed signal events


L: integrated luminosity

N_{bkq}: estimated background (from MC)

ε : detection efficiency (from MC)

1 +δ: radiative factor (from MC)

Agreement with previous measurements and overall uncertainty improved by 30%

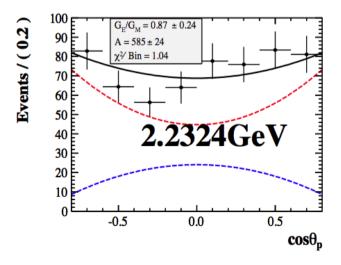
- from proton angular distribution in CM: extraction of R = $|G_E|/|G_M|$ and $|G_M|$:
 - ▶ fit differential cross section with:

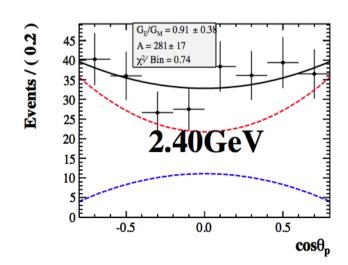
$$\frac{\mathrm{dN}}{\varepsilon - \mathrm{d\cos\theta_p}} = \mathrm{N_{norm}} \left[\left(1 + \mathrm{\cos^2\theta_p} \right) + \mathrm{R^2} \quad \frac{1}{\tau} \mathrm{\sin^2\theta_p} \right]$$

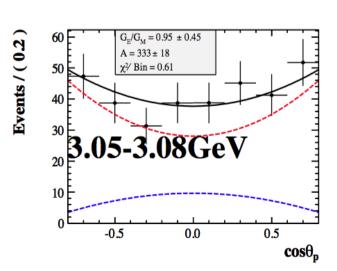
$$N_{\mathrm{norm}} = \frac{2\pi\alpha^2\beta L}{4s} [1.94 + 5.04 \frac{m_p^2}{s} R^2] \cdot |\mathsf{G}_{\mathsf{M}}|^2$$

▶ from second moment of $\cos\theta_{D}$:

$$R = \sqrt{\frac{s}{4m_p^2} \frac{\langle \cos^2 \theta_p \rangle - 0.243}{0.108 - 0.648 \langle \cos^2 \theta_p \rangle}} \; ; \qquad \sigma_R = \frac{0.0741}{R(0.167 - \langle \cos^2 \theta \rangle)^2} \frac{s}{4m_p^2} \sigma_{\langle \cos^2 \theta_p \rangle}$$


$e+e-\rightarrow p\bar{p}$ (Phys. Rev. D91, 112004)

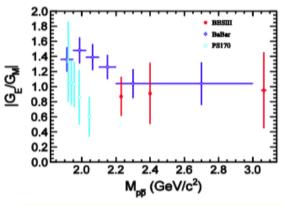

Extraction of electromagnetic |G_E/G_M| ratio


Angular analysis to extract the em FFs:

- $Arr R_{em} = G_E(q^2)/G_M(q^2)$
- \triangleright θ : polar angle of proton at the c.m.system
- Fit function:

$$ightharpoonup N_{norm} = \frac{2\pi\alpha^2\beta L}{4s} \left[1.94 + 5.04 \frac{m_p^2}{s} R^2 \right] G_M(s)^2$$
 is the overall normalization

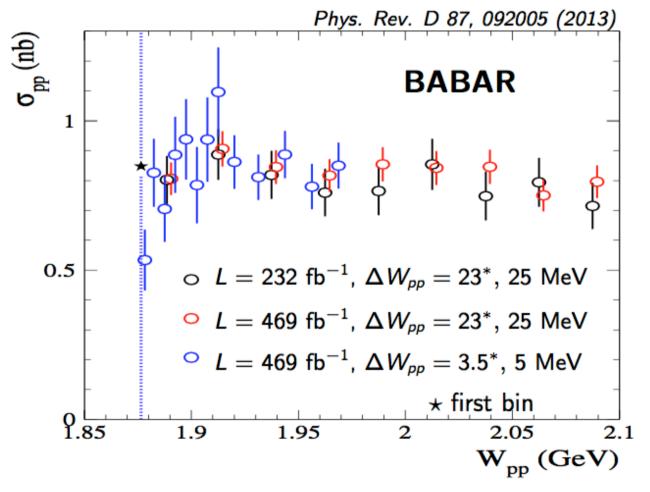
e+e- → pp (Phys. Rev. D91, 112004)


Extraction of electromagnetic |G_E/G_M| ratio

Method of Moment

- ightharpoonup Second Moment of $\cos\theta_{p}$: $\langle\cos^2\theta_{p}\rangle = \frac{1}{N_{\rm norm}}\int\cos^2\theta_{p}\frac{d\sigma}{d\Omega}d\cos\theta_{p}$
- The estimator of $\langle \cos^2 \theta_p \rangle$: $\langle \cos^2 \theta_p \rangle = \overline{\cos^2 \theta_p} = \frac{1}{N} \sum_{i=1}^{N} \cos^2 \theta_p / \epsilon_i$
- $> Extract |G_E/G_M| \ ratio: \ R = \sqrt{\frac{s}{4m_p^2} \frac{\langle cos^2\theta_p \rangle 0.243}{0.108 0.648 \langle cos^2\theta_p \rangle}}$
- ightharpoonup Uncertainty of $\langle \cos^2 \theta_p \rangle$: $\sigma_{\langle \cos^2 \theta_p \rangle} = \sqrt{\frac{1}{N-1} \left[\langle \cos^4 \theta_p \rangle \langle \cos^2 \theta_p \rangle \right]}$

Results on $|G_E/G_M|$ ratio:

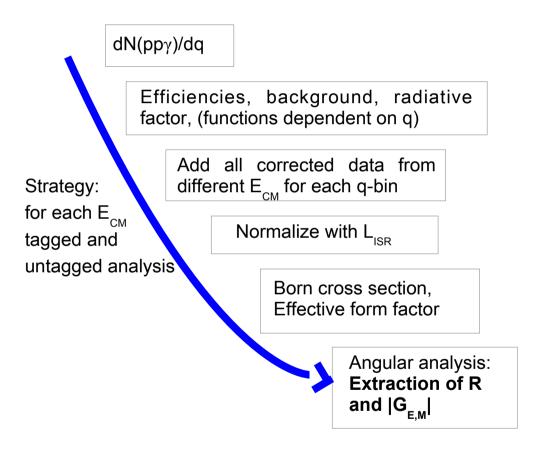

$\sqrt{s} \; ({ m MeV})$	$ G_E/G_M $	$ G_M \ (\times 10^{-2})$	χ^2/ndj
]	Fit on $\cos \theta_p$	
2232.4	$0.87 \pm 0.24 \pm 0.05$	$18.42 \pm 5.09 \pm 0.98$	1.04
2400.0	$0.91 \pm 0.38 \pm 0.12$	$11.30 \pm 4.73 \pm 1.53$	0.74
(3050.0, 3080.0)	$0.95 \pm 0.45 \pm 0.21$	$3.61 \pm 1.71 \pm 0.82$	0.61
	met	hod of moment	
2232.4	0.83 ± 0.24	18.60 ± 5.38	-
2400.0	0.85 ± 0.37	11.52 ± 5.01	-
(3050.0, 3080.0)	0.88 ± 0.46	3.34 ± 1.72	-

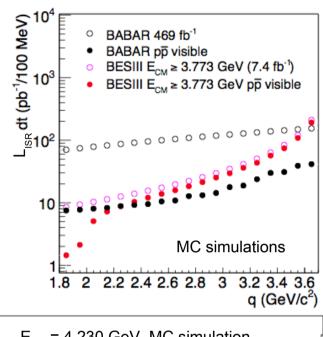
Accepted by Phys. Rev. D arXiv:1504.02680

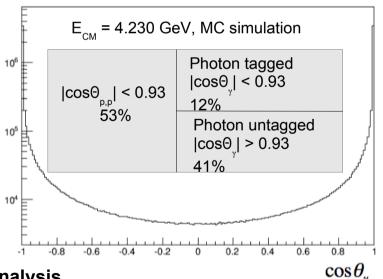
Proton threshold

At $p\bar{p}$ threshold $(q^2 = 4M_p^2)$

S. Pacetti


With more L and smaller binning, the result changed somewhat.


Results from BESIII needed (from ISR process).



Prospects for $e^+e^- \rightarrow p\overline{p}\gamma_{ISR}$

Available data samples (E_{CM}): $\psi'', \psi(4040), Y(4230), Y(4260), Y(4360), Y(4420), Y(4600). Total: 7.4 fb-1$

For q > 2.1 GeV: Large efficiencies (~20%) from untagged photon analysis provide large statistics and better $|G_E|/|G_M|$ accuracies

For q < 2.1 GeV: Only tagged measurement possible for $E_{CM} \ge 3.773$ GeV.

Low efficiencies (~6%), lower statistics than BaBar. Perhaps untagged analysis of J/ψ and ψ(3686) possible ?!

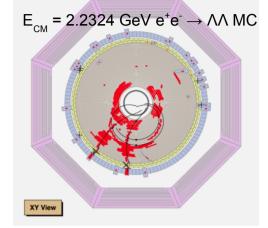
$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ (BESIII Preliminary!!)

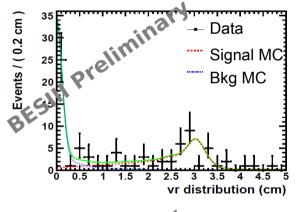
Analysis based on 40.5 pb⁻¹ collected in 4 scan points between 2.2324 – 3.08 GeV in 2012

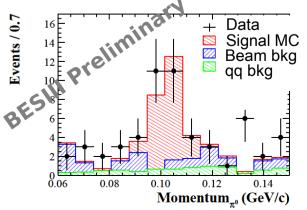
• Selection at $E_{CM} = 2.2324 \text{ GeV} (m_{AA} = 2.2317 \text{ GeV})$

Reconstruction of ee--> $\Lambda\Lambda$ from Λ --> $p\pi$ and Λ --> $p\pi$ (BR 64%)

- only pi and pi in detector
- opion-momentum well defined
- Anti-proton annihilation--> secondary particles |R] ~3 cm
- \rightarrow 43 ± 7 events observed


Reconstruction of ee--> $\Lambda\bar{\Lambda}$ from $\bar{\Lambda}$ --> $\bar{n}\pi^{0}$:(BR 36%)


- Multivariate Analysis (boosted decision tree) to identify n
- $p_{\pi 0}$ well defined
- \rightarrow 22 ± 6 events observed
- At E_{CM} = 2.4, 2.8 and 3.08 GeV


Reconstruction of ee--> $\Lambda\bar{\Lambda}$ from Λ --> $p\pi^{-}$ and $\bar{\Lambda}$ --> $\bar{p}\pi^{+}$

Only 4 oppositely charged tracks in detector:

- \circ identified as p, \bar{p} , π^{-} and π^{+}
- of from interaction vertex
- ΛΛ invariant mass cut
- ∧∧ back to back signature
- \circ sharing E_{CM}

$e^+e^- \rightarrow \Lambda \overline{\Lambda}$ (BESIII Preliminary!!)

- Results:
 - of from σ_{Born} (ee--> ΛΛ) measurement, extraction of effective form factor, |G|:

$$\sigma_{\rm Born} = \frac{N_{\rm obs} - N_{\rm bkg}}{L \cdot \varepsilon \cdot (1 + \delta)} \qquad |\mathbf{G}| = |\mathbf{G}_{\rm Born}| \qquad |\mathbf{G}| = \sqrt{\frac{\sigma_{Born}}{(1 + \frac{1}{2\tau})(\frac{4\pi\alpha^2\beta}{3E_{\rm CM}^2})}}$$

Cross section expected to vanish at threshold (q = $2m_{\Lambda}$):

$$\sigma(q^{2}) = \frac{4\pi\alpha^{2}\beta}{3q^{2}} \left[\left| G_{M}(q^{2}) \right|^{2} + \frac{1}{2\tau} \left| G_{E}(q^{2}) \right|^{2} \right] \quad \text{with } \beta = \sqrt{1 - 4m_{\Lambda}^{2}/q^{2}}$$

\sqrt{s} Ge	eV	Reconstruction	σ_{Born} (pb)	$ G (\times 10^{-2})$	
2.232	24	$\Lambda o p\pi^-, \overline{\Lambda} o \bar{p}\pi^+$	$325 \pm 53 \pm 46$		
		$\overline{\Lambda} ightarrow ar{n} \pi^0$	$(3.0 \pm 1.0 \pm 0.4) \times 10^2$		
		combined	320 ± 58	63.4 ± 5.7	
2.40)		$133 \pm 20 \pm 19$	$12.93 \pm 0.97 \pm 0.92$	
2.80	0		$15.3 \pm 5.4 \pm 2.0$	$4.16 \pm 0.73 \pm 0.27$	
3.08	8		$3.9 \pm 1.1 \pm 0.5$	$2.21 \pm 0.31 \pm 0.14$	

Coulomb interaction at quark level?

Prospects for $e^+e^- \rightarrow \Lambda\Lambda$, $\Sigma\Sigma$, $\Xi\Xi$...

From BESIII 2015: 15 points above Ilbar threshold!

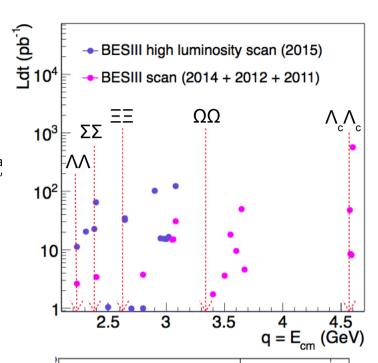
Parity violating decay: Λ -->p π , emission of proton depends on Λ -polarisation

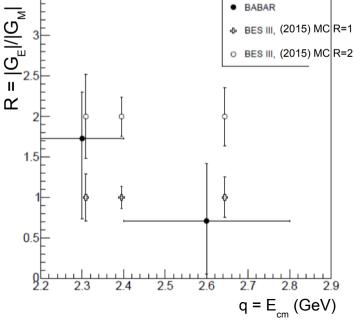
$$\frac{dN}{d\cos\theta_p} \propto 1 + \alpha_{\Lambda} P_n \cos\theta_p^{(*)}$$
(*) Angle between proton a polarization axis in mother)

rest frame

Imaginary part of FFs leads to polarization observables:

$$P_{n} = -\frac{\sin 2\theta \sin \Delta\phi / \tau}{R \sin^{2} \theta_{N} / \tau + (1 + \cos^{2} \theta_{N}) / R} = \frac{3}{\alpha_{\Lambda}} \langle \cos \theta_{p} \rangle$$


Expected statistical accuracies for P_n between 6 and 17%


Expected statistical accuracies for $R = |G_E|/|G_M| = 1$ between 14 and 29%

Complete determination of TL Ffs possible!!

Also available from threshold:

ee
$$\rightarrow \Lambda \overline{\Sigma^0}$$
, $\overline{\Sigma^-}\Sigma^+$, $\overline{\Sigma^0}\Sigma^0$, $\overline{\Sigma^-}\Sigma^+$, $\overline{\Xi^0}\Xi^0$, $\overline{\Xi^+}\Xi^-$, $\overline{\Omega^+}\Omega^-$, $\Lambda^-_c\Lambda^+_c$
p π , p π^0 , y Λ , n π^- , $\Lambda \pi^0$, $\Lambda \pi$, ΛK , $\Lambda \pi$,
64%, 52%, 100%, 100%, 100%, 100%, 68%, 1%

Hyperon TL EM FF in BESIII

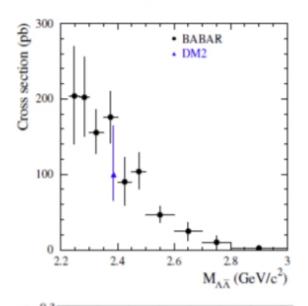
Prospects for BES III

Other hyperon channels: $\Lambda \overline{\Sigma}^0$, $\Sigma^0 \overline{\Sigma}^0$

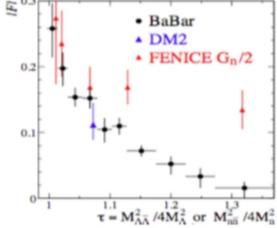
$E_{e^+e^-}$ (GeV)	$L(pb^{-1})$	$\epsilon_{\Lambda \overline{\Sigma^0}}$ (%)	$\sigma_{\Lambda \overline{\Sigma^0}}(pb)$	$N_{\Lambda \overline{\Sigma^0}}$	$\epsilon_{\Sigma^0\overline{\Sigma^0}}$ (%)	$\sigma_{\Sigma^0\overline{\Sigma^0}}$ (pb)	$N_{\Sigma \overline{\Sigma^0}}$	
2.309	20	4	374	123				
2.386	20	8	40	26	4	351	115	
2.395	55	8	40	72	7	100	158	10.3±4.3
2.644	65	15	6	24	15	25	100	6.5±3.5
2.9	100	17	2	14	17	3.4	24	1.4±3.3
2.981	15	17	1.5	1.6	17	3.0	3	1.410.0

- · Luminosities from this proposal
- Acceptances from $J/\psi \rightarrow Y\overline{Y}$ (PRD 86 032008)
- · Cross sections from:
 - BABAR (away from threshold)
 - Rinaldo Baldini (at threshold)
- => More than 10-fold increase of statistics.

For $\Sigma^+\overline{\Sigma}^-$:


BABAR

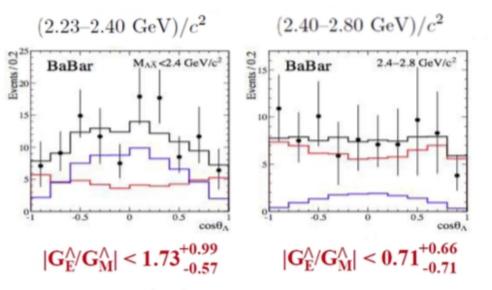
- Cross section should be larger than for $\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} x_{ij}^{j}$
- Acceptance of the same order

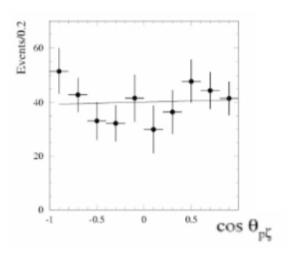

e+e- → Hyperons

[B. Aubert et al., Phys. Rev. D 76, 092006 (2007)]

About 350 $\Lambda \overline{\Lambda} \gamma_{_{ISR}}$ events with $\Lambda \rightarrow p\pi^{-}$ and $\overline{\Lambda} \rightarrow \overline{p}\pi^{+}$ selected by BaBar

- Only one measurement before by DM2
- Cross section roughly flat at threshold and possibly not vanishing even though no Coulomb correction for neutral baryons production
- However, large error bars do not exclude $\sigma_{threshold} = 0$




- Rise of FFs close to threshold observed also in this case
- Fit with f = K/qⁿ gives n= 9.2 ±0.3
 - pQCD asymptotic prediction (q⁴) reached at 3GeV first
- F_n in agreement with DM2 and with F_n by Fenice

e+e- → Hyperons

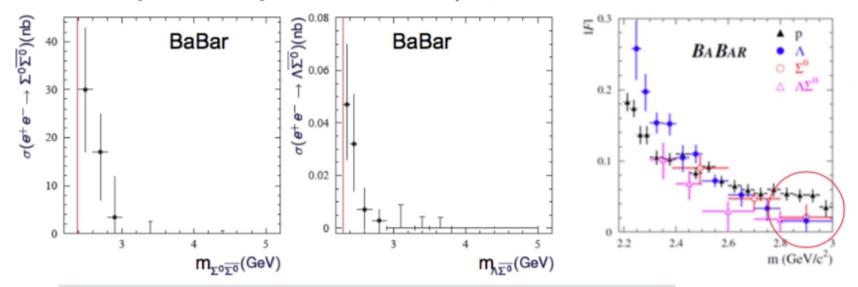
[B. Aubert et al., Phys. Rev. D 76, 092006 (2007)]

Ratio of form factors extracted from the analysis of the angular distribution of the lambda helicity angle

- → Compatible with $|G_E^{\wedge}/G_M^{\wedge}| = 1$, but with large uncertainties
- Polarization tested by fitting slope of angle between lambda polarization axis and proton momentum in Λ rest frame

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{p\zeta}} = A(1 + \alpha_{f}\zeta_{f}\cos\theta_{p\zeta})$$

$$= > -0.22 < \varsigma_{f} < 0.28 \quad (90\% \text{ CL})$$


Under $|G_{E}^{\wedge}| = |G_{M}^{\wedge}|$ assumption, tests a non-zero relative phase between G_{E}^{\wedge} and G_{M}^{\wedge} : $-0.76 < \sin \phi < 0.98$

e+e- → Hyperons

[B. Aubert et al., Phys. Rev. D 76, 092006 (2007)]

BaBar performed first measurement ever for these channels

Reconstruct Σ baryon in decay channels $\Sigma \to \Lambda \gamma$ and $\Lambda \to p\pi$: few tens of signal events

- $\sigma(e^+e^- \to \Sigma^0\overline{\Sigma^0})$ is different from zero at threshold, being 0.030 \pm 0.013 nb
- $\sigma(e^+e^- \to \Lambda \overline{\Sigma^0})$ is different from zero at threshold, being 0.047 \pm 0.022 nb

QCD predictions:

$$F_{\Lambda}/F_{p} = 0.24$$

$$F_{\Sigma}/F_{\Lambda} = -1.18$$

$$F_{\Sigma\Lambda}/F_{\Lambda} = -2.34$$

- → Effective |F| shows same rising behavior
- Data seem to agree with theory only for F_s/F_h (by accident?)
- \sim F_{$_{\Lambda}$}/F_{$_{\rm p}$} decrease with energy, similar to prediction close to 3 GeV

[Chernyak et al. Z. Phys. C 42, 569 (1989)]

New scan in 2 - 3.1 GeV

- 2014.12.30-2015.5.1;
- From high to low;
- Added 2.05 GeV;
- 20 energy points, total online luminosity 525 pb⁻¹;
- Allows for form factor measurements, threshold studies, ...

E_{cm}		L_{Needed}	t_{beam}	Purpose
(GeV)	(GeV)	(4	(days)	
2.0		≥ 8.95	14.6	Nucleon FFs
2.1		10.8	14.8	Nucleon FFs
2.15		2.7	2.29	Y(2175)
2.175		10(+)	8.5	Y(2175)
2.2		13	11	Nucleon FFs, Y(2175)
2.2324	2.2314	11	4	Hyp threshold $(\Lambda \overline{\Lambda})$
2.3094	2.3084	20	16	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^0\overline{\Lambda})$
2.3864	2.3853	20	8.7	Hyp Threshold $(\Sigma^0 \overline{\Sigma}^0)$
				Hyp FFs
2.3960	2.3949	≥64	27.8	Nucleon & Hyp FFs
				Hyp Threshold $(\Sigma^{-}\overline{\Sigma}^{+})$
2.5		0.4895	8h	R scan
2.6444	2.6434	65	18	Nucleon & Hyp FFs
2.6464				Hyp Threshold $(\Xi^{-}\overline{\Xi}^{+})$
2.7		0.5542	4.2h	R scan
2.8		0.6136	4h	R scan
2.9		100	18.5	Nucleon & Hyp FFs
2.95		15	2.8	$m_{p\bar{p}}$ step
2.981		15	2.8	$\eta_c \;, m_{p \bar p} \; { m step}$
3.0		15	2.8	$m_{par{p}}$ step
3.02		15	2.8	$m_{p\bar{p}}$ step
3.08		120	13.2	Nucleon FFs $(+30 \text{ pb}^{-1})$
	2.0 2.1 2.15 2.175 2.2 2.2324 2.3094 2.3864 2.3960 2.5 2.6444 2.7 2.8 2.9 2.95 2.981 3.0	(GeV) (GeV) 2.0 2.1 2.15 2.175 2.2 2.2324 2.2324 2.3094 2.3084 2.3864 2.3853 2.3960 2.3949 2.5 2.6444 2.6464 2.7 2.8 2.9 2.95 2.981 3.0 3.02	$\begin{array}{c ccccc} (\text{GeV}) & (\text{GeV}) & (\text{pb}^{-1}) \\ \hline 2.0 & \geq 8.95 \\ \hline 2.1 & 10.8 \\ \hline 2.15 & 2.7 \\ \hline 2.175 & 10(+) \\ \hline 2.2 & 13 \\ \hline 2.2324 & 2.2314 & 11 \\ \hline 2.3094 & 2.3084 & 20 \\ \hline \hline 2.3864 & 2.3853 & 20 \\ \hline \hline 2.3864 & 2.3853 & 20 \\ \hline \hline 2.3960 & 2.3949 & \geq 64 \\ \hline \hline 2.5 & 0.4895 \\ \hline 2.6444 & 2.6434 & 65 \\ \hline 2.6464 & & & \\ \hline 2.7 & 0.5542 \\ \hline 2.8 & 0.6136 \\ \hline 2.9 & 100 \\ \hline 2.95 & 15 \\ \hline 2.981 & 15 \\ \hline 3.0 & 15 \\ \hline 3.02 & 15 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$