Ryan Mitchell Indiana University Bormio 2014 January 31, 2014

Beijing, China

BESIII (at IHEP)

(I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$

Ryan Mitchell – Indiana University

Ryan Mitchell – Indiana University

(I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$

- (I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.

- (I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$...

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

 e^{-} Most XYZ states were discovered at Belle and BaBar using every collisions in the bottomonium region... μ^{+}

For example in B decays...

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

X(3872) Properties:

- * very narrow (< 1.2 MeV)
- * has $J^{PC} = 1^{++}$ (LHCb)
- * too light to be the $\chi_{c1}(2P)$
- * confirmed by many experiments
- * mass is right at D*0D0 mass

D*D molecule?

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Other B decays: $B^{\pm} \rightarrow K^{\pm}(\pi^{+}\pi^{-}J/\psi)$ $B \rightarrow K(\omega J/\psi)$ $B \rightarrow K(\pi^{+}\chi_{c1}(1P))$ $B \rightarrow K(\pi^{+}\psi(2S))$

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

For example in B decays...

* (not confirmed by BaBar)

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

Ryan Mitchell – Indiana University

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

PRL 95, 142001 (2005)

Ryan Mitchell – Indiana University

Ryan Mitchell – Indiana University

Most XYZ states were discovered at **Belle** and **BaBar** using e⁺e⁻ collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

Y(4260), Y(4360) Properties:

- * not predicted in the quark model
- * tight upper limits on open charm decays

Theoretical Ideas on Y(4260), Y(4360):

DD* bound states (Y(4360) = $D_sD_s^*$) (NPA815, 53 (2009)) J/ ψ f_0 bound state (with KK $\rightarrow \pi\pi$) (PRD80, 094012 (2009)) Tetraquarks (or two diquarks) (PRD72, 031502(R) (2005)) Hadrocharmonium (PLB666, 344 (2008)) Hybrid Charmonium (PLB628, 215 (2005), PRD78, 094504 (2008), PLB625, 212 (2005))

Connecting the X

DECILI

Ryan Mitchell – Indiana University

Connecting the X

DECILI

Ryan Mitchell – Indiana University

Google satellite image of BEPC-II
Connecting the X

DECILI

Ryan Mitchell – Indiana University

Connecting the X

DECILI

Ryan Mitchell – Indiana University

Google satellite image of BEPC-II

Connecting the XVII + DEGU

Connecting the X

DECILI

Ryan Mitchell – Indiana University

Ryan Mitchell – Indiana University

Connecting the XVX - PECH BEPCI, HEP, Beijing, China

Connecting the X

DECILI

Ryan Mitchell – Indiana University

BESIII Detector

Select data samples (2008-present):

- * more than a billion J/ψ decays
- * 106 million $\psi(2S)$ decays (+ more)
- * ~2.9 fb⁻¹ at $\psi^{\prime\prime}$
- * ~500 pb⁻¹ at 4.009 GeV
- * XYZ data

MARK I Detector

BESIII Detector

Select data samples (2008-present):

- * more than a billion J/ψ decays
- * 106 million $\psi(2S)$ decays (+ more)
- * ~2.9 fb⁻¹ at $\psi^{\prime\prime}$
- * ~500 pb⁻¹ at 4.009 GeV
- * XYZ data

BESIII Initial Round of Data-taking

BESIII Initial Round of Data-taking

Ryan Mitchell – Indiana University

3.2

3.2

 $e^+e^- (at \ 4260 \ MeV) \rightarrow \pi^+\pi^- J/\psi \ at \ BESIII$

 $e^+e^- (at \ 4260 \ MeV) \rightarrow \pi^+\pi^- J/\psi \ at \ BESIII$

Viewpoint: New Particle Hints at Four-Quark Matter

Eric Swanson, University of Pittsburgh, Pittsburgh, PA 15260, USA Published June 17, 2013 | Physics 6, 69 (2013) | DOI: 10.1103/Physics.6.69

 Z_{c} 3900

Ryan Mitchell – Indiana University

BESIII Initial Round of Data-taking

BESIII Additional Round of Data-taking

BESIII Additional Round of Data-taking

 e^+e^- (at 4260 MeV) $\rightarrow \pi^+\pi^-h_c(1P)$ at BESIII 3.20 $\mathbf{M}^{\mathrm{recoil}}_{\gamma\pi^{+}\pi^{-}}(\mathrm{GeV/c}^{2})$ 35 3.15 30 3.10 25 3.05 20 3.00 15 2.95 2.90 10 2.85 2.80^上 3.50 3.54 3.52 3.56 3.58 3.60 $M_{\pi^+\pi^-}^{recoil}(GeV/c^2)$ PRL 111, 242001 (2013)

> Exclusively reconstruct the process: $e^+e^- \rightarrow \pi^+\pi^-h_c(1P)$ $h_c(1P) \rightarrow \gamma\eta_c(1S)$ $\eta_c(1S) \rightarrow 16$ decay channels

 $\begin{array}{c} 0.6 & 0.7 & 0.8 \\ M_{\pi^{+}\pi^{-}}^{2} (GeV/c^{2})^{2} \end{array}$

The $Z_c(3900)$ is close to DD^* threshold...

The $Z_c'(4020)$ is close to D^*D^* threshold...

Search for $Y(4260) \rightarrow \gamma X(3872)...$

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\overline{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

Ryan Mitchell – Indiana University

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.

- (I) The quark model describes most of charmonium remarkably well. $(c\bar{c})$
- (II) But the "XYZ" states point beyond the quark model. $(c\bar{c}g, c\bar{q}q\bar{c}, (c\bar{q})(q\bar{c}), c\bar{c}\pi\pi)$
- (III) Most of the XYZ states were discovered by Belle and BaBar.
- (IV) But BESIII can directly produce the Y(4260) and Y(4360) in e⁺e⁻ annihilation.
- (V) BESIII has observed "charged charmoniumlike structures" the $Z_c(3900)$ and the $Z_c'(4020)$.
- (VI) BESIII has also observed a transition to the X(3872).
- (VII) We are building connections.
- (VIII) But there is much left to do... and a new running period has begun...

