Connecting the XYZ at BESIII

Ryan Mitchell
Indiana University
Bormio 2014
January 31, 2014

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Example potential from Barnes, Godfrey, Swanson:

$$
\begin{aligned}
V_{0}^{(c \bar{c})}(r)= & -\frac{4}{3} \frac{\alpha_{s}}{r}+b r+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \tilde{\delta}_{\sigma}(r) \overrightarrow{\mathrm{S}}_{c} \cdot \overrightarrow{\mathrm{~S}}_{\bar{c}} \\
& (\text { Coulomb }+ \text { Confinement }+ \text { Contact })
\end{aligned}
$$

$$
V_{\text {spin-dep }}=\frac{1}{m_{c}^{2}}\left[\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{b}{2 r}\right) \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~S}}+\frac{4 \alpha_{s}}{r^{3}} \mathrm{~T}\right]
$$

$$
\text { (Spin-Orbit }+ \text { Tensor) }
$$

PRD72, 054026 (2005)

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Example potential from Barnes, Godfrey, Swanson:

$$
\begin{gathered}
V_{0}^{(c \bar{c})}(r)=-\frac{4}{3} \frac{\alpha_{s}}{r}+b r+\frac{32 \pi \alpha_{s}}{9 m_{c}^{2}} \tilde{\delta}_{\sigma}(r) \overrightarrow{\mathrm{S}}_{c} \cdot \overrightarrow{\mathrm{~S}}_{\bar{c}} \\
\text { (Coulomb + Confinement }+ \text { Contact) }
\end{gathered}
$$

$$
\begin{array}{r}
V_{\text {spin-dep }}=\frac{1}{m_{c}^{2}}\left[\left(\frac{2 \alpha_{s}}{r^{3}}-\frac{b}{2 r}\right) \overrightarrow{\mathrm{L}} \cdot \overrightarrow{\mathrm{~S}}+\frac{4 \alpha_{s}}{r^{3}} \mathrm{~T}\right] \\
(\text { Spin-Orbit } \quad+\quad \text { Tensor) }
\end{array}
$$

PRD72, 054026 (2005)

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Crystal Ball at SLAC (discovery of η_{c})

PRL45, 1150 (1980)

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$

Connecting the XYZ at BESIII

Example lattice QCD calculation:

Hadron Spectrum Collaboration JHEP 1207, 126 (2012)
$\overline{0^{-+}} 1^{--} \quad 2^{-+} \quad 1^{-+} \quad 0^{++} \quad 1^{+-} \quad 1^{++} \quad 2^{++}$

Connecting the XYZ at BESIII

Example lattice QCD calculation:

Hadron Spectrum Collaboration JHEP 1207, 126 (2012)

$$
\begin{array}{llllllll}
\hline 0^{-+} & 1^{--} & 2^{-+} & 1^{-+} & 0^{++} & 1^{+-} & 1^{++} & 2^{++} \\
\hline
\end{array}
$$

HYBRID CHARMONIUM

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(\mathbf{4 3 6 0})$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0}) \ldots$

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the "XYZ" states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...

$\mathrm{M}=3871.68 \pm 0.17 \mathrm{MeV}$
$\Gamma<1.2 \mathrm{MeV} \quad($ PDG 2012 $)$

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...

X(3872) Properties:

* very narrow ($<1.2 \mathrm{MeV}$)
* has JPC $=1^{++}$(LHCb)
* too light to be the $\chi_{\mathrm{cl}}(2 \mathrm{P})$
* confirmed by many experiments
* mass is right at $\mathrm{D}^{* 0} \mathrm{D}^{0}$ mass

D*D molecule?

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...

Other B decays:

$$
\begin{aligned}
& B^{ \pm} \rightarrow K^{ \pm}\left(\pi^{+} \pi^{-} J / \psi\right) \\
& B \rightarrow K(\omega J / \psi) \\
& B \rightarrow K\left(\pi^{+} \chi_{c l}(1 P)\right) \\
& B \rightarrow K\left(\pi^{+} \psi(2 S)\right)
\end{aligned}
$$

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

For example in B decays...
$\mathrm{Z}(4430)$ Properties:
$*$ has an electric charge
$\quad \Rightarrow$ needs at least four quarks!
$*$ (not confirmed by BaBar)

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

PRL 95, 142001 (2005)

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

PRD 86, 051102(R) (2012)

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

PRL 98, 212001 (2007)

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

arXiv:1211.6271 and CHARM 2012

Connecting the XYZ at BESIII

Most XYZ states were discovered at Belle and BaBar using $\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the bottomonium region...

And in Initial State Radiation (ISR)...

Y(4260), Y(4360) Properties:

* not predicted in the quark model
* tight upper limits on open charm decays

Connecting the XYZ at BESIII

Theoretical Ideas on $\mathrm{Y}(4260), \mathrm{Y}(4360)$:

DD* bound states $\left(\mathrm{Y}(4360)=\mathrm{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{s}}{ }^{*}\right)$ (NPA815, 53 (2009))
$\mathrm{J} / \psi \mathrm{f}_{0}$ bound state (with $\mathrm{KK} \rightarrow \pi \pi$) (PRD80, 094012 (2009))

Tetraquarks (or two diquarks) (PRD72, 031502(R) (2005))

Hadrocharmonium
(PLB666, 344 (2008))
Hybrid Charmonium
(PLB628, 215 (2005), PRD78, 094504 (2008),
PLB625, 212 (2005))

Connecting the XYZ at BESIII

BESIII can produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(\mathbf{4 3 6 0})$ directly by tuning the BEPCII center of mass energies...

Google satellite image of BEPC-II

Connecting the

Google satellite image of BEPC-II

Connecting the XYZ at BESIII

BEPC-II e+e- Collider

$\mathrm{e}^{+} \mathrm{e}^{-}$collisions in the charmonium region
(about $2-5$? ? GeV center of mass energies)

Connecting the XYZ at BESIII

Connecting the XYZ at BESIII

Connecting the XYZ at BESIII

BESIII Detector

Select data samples (2008-present):

* more than a billion J / ψ decays
* 106 million $\psi(2 S)$ decays (+ more)
* $\sim 2.9 \mathrm{fb}^{-1}$ at $\psi^{\prime \prime}$
* $\sim 500 \mathrm{pb}^{-1}$ at 4.009 GeV
* XYZ data

Connecting the XYZ at BESIII

MARK I Detector

BESIII Detector

Select data samples (2008-present):

* more than a billion J / ψ decays
* 106 million $\psi(2 S)$ decays (+ more)
* $\sim 2.9 \mathrm{fb}^{-1}$ at $\psi^{\prime \prime}$
* $\sim 500 \mathrm{pb}^{-1}$ at 4.009 GeV
* XYZ data

Connecting the XYZ at BESIII

BESIII can produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(\mathbf{4 3 6 0})$ directly by tuning the BEPCII center of mass energies...

Connecting the XYZ at BESIII

BESIII Initial Round of Data-taking

Connecting the XYZ at BESIII

BESIII Initial Round of Data-taking

Connecting the XYZ at BESIII

$e^{+} e^{-}($at 4260 MeV$) \rightarrow \pi^{+} \pi^{-} J / \psi$ at BESIII

PRL 110, 252001 (2013)
(cross section consistent with Belle and BaBar)

Connecting the XYZ at BESIII

(cross section consistent with Belle and BaBar)

Connecting the XYZ at BESIII

(cross section consistent with Belle and BaBar)

Connecting the XYZ at BESIII

Connecting the XYZ at BESIII

PRL34, 1181 (1975)

Connecting the XYZ at BESIII

Connecting the XYZ at BESIII

Connecting the XYZ at BESIII

\Rightarrow "Charged Charmoniumlike Structure"
(Confirmed by Belle and CLEO data.)
(Many theoretical ideas -- close to $D^{*} D$ threshold.)

Connecting the XYZ at BESIII

Viewpoint: New Particle Hints at Four-Quark Matter
Eric Swanson, University of Pittsburgh, Pittsburgh, PA 15260, USA
Published June 17, 2013 | Physics 6, 69 (2013) | DOI: 10.1103/Physics.6.69

Connecting the XYZ at BESIII

Connecting the XYZ at BESIII

BESIII Initial Round of Data-taking

Connecting the XYZ at BESIII

BESIII Additional Round of Data-taking

Connecting the XYZ at BESIII

BESIII Additional Round of Data-taking
Integrated_Luminosity

$91 \mathrm{pb}^{-1} \uparrow \uparrow \uparrow \uparrow$	4230 (1011 pb ${ }^{-1}$)	$\uparrow \uparrow \uparrow$
4210 (52 pb ${ }^{-1}$)		3810 (48 pb-1)
4220 (52 pb-1)		3900 (50 pb ${ }^{-1}$)
4245 (53 pb-1)		4090 (50 pb-1)

Connecting the XYZ at BESIII

$e^{+} e^{-}($at 4260 MeV$) \rightarrow \pi^{+} \pi^{-} h_{c}(1 P)$ at BESIII

PRL 111, 242001 (2013)

Exclusively reconstruct the process:

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \\
\mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \rightarrow \gamma \eta_{\mathrm{c}}(1 \mathrm{~S}) \\
\eta_{\mathrm{c}}(1 \mathrm{~S}) \rightarrow \mathbf{1 6} \text { decay channels }
\end{gathered}
$$

Connecting the XYZ at BESIII

PRL 111, 242001 (2013)

Exclusively reconstruct the process:

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi \mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \\
\mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \rightarrow \gamma \eta_{\mathrm{c}}(1 \mathrm{~S}) \\
\eta_{\mathrm{c}}(1 \mathrm{~S}) \rightarrow \mathbf{1 6} \text { decay channels }
\end{gathered}
$$

Connecting the XYZ at BESIII

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}(1 P)$ at BESIII

PRL 111, 242001 (2013)

Exclusively reconstruct the process:

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \\
\mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \rightarrow \gamma \eta_{\mathrm{c}}(1 \mathrm{~S}) \\
\eta_{\mathrm{c}}(1 \mathrm{~S}) \rightarrow \mathbf{1 6} \text { decay channels }
\end{gathered}
$$

Connecting the XYZ at BESIII

$$
e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}(1 P) \text { at BESIII }
$$

PRL 111, 242001 (2013)

Exclusively reconstruct the process:

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi-\mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \\
\mathrm{h}_{\mathrm{c}}(1 \mathrm{P}) \rightarrow \gamma \eta_{\mathrm{c}}(1 \mathrm{~S}) \\
\eta_{\mathrm{c}}(1 \mathrm{~S}) \rightarrow \mathbf{1 6} \text { decay channels }
\end{gathered}
$$

Connecting the XYZ at BESIII

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}(1 P)$ at BESIII

PRL 111, 242001 (2013)
\Rightarrow "Charged Charmoniumlike Structure"
(this time close to $D^{*} D^{*}$ threshold)

$$
\begin{gathered}
\mathrm{M}=4022.9 \pm 0.8 \pm 2.7 \mathrm{MeV} \\
\Gamma=7.9 \pm 2.7 \pm 2.6 \mathrm{MeV}
\end{gathered}
$$

Connecting the XYZ at BESIII

$e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}(1 P)$ at BESIII

PRL 111, 242001 (2013)

The cross section shape requires more data... Is it a combination of the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(\mathbf{4 3 6 0})$?

Or something completely different?

Connecting the XYZ at BESIII

The $\mathrm{Z}_{\mathrm{c}}(3900)$ is close to DD^{*} threshold...

Connecting the XYZ at BESIII

The $\mathrm{Z}_{\mathrm{c}}(3900)$ is close to DD^{*} threshold...

... and BESIII sees structure in DD*.

Reconstruct the π^{+}and $D^{0} \rightarrow K^{-} \pi^{+}$and infer the D^{*-}. (Also analyze $\pi^{+} D^{-} D^{* 0}$ with the same method.)

Connecting the XYZ at BESIII

The $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$ is close to $\mathrm{D}^{*} \mathrm{D}^{*}$ threshold...

Connecting the XYZ at BESIII

The $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$ is close to $\mathrm{D}^{*} \mathrm{D}^{*}$ threshold...

Connecting the XYZ at BESIII

Search for $\mathrm{Y}(4260) \rightarrow \gamma \mathrm{X}(3872) \ldots$

Connecting the XYZ at BESIII

$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi J / \psi\right)$ at BESIII

\Rightarrow "Observation of the $\mathrm{X}(3872)$ "
significance $=6.3 \sigma$
$\mathrm{N}=20.1 \pm 4.5$ events
$\mathrm{M}=3871.9 \pm 0.7 \pm 0.2 \mathrm{MeV}$
Γ consistent with resolution

Connecting the XYZ at BESIII

$e^{+} e^{-} \rightarrow \gamma\left(\pi^{+} \pi^{-} J / \psi\right)$ at BESIII

Hints that this is $Y(4260) \rightarrow \gamma X(3872)!?$

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathbf{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathbf{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$

Crystal Ball at SLAC (discovery of η_{c})

PRL45, 1150 (1980)

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.

Connecting the XYZ at BESIII

(I) The quark model describes most of charmonium remarkably well. $(c \bar{c})$
(II) But the " $X Y Z$ " states point beyond the quark model. $(c \bar{c} g, c \bar{q} q \bar{c},(c \bar{q})(q \bar{c}), c \bar{c} \pi \pi)$
(III) Most of the XYZ states were discovered by Belle and BaBar.
(IV) But BESIII can directly produce the $\mathbf{Y}(\mathbf{4 2 6 0})$ and $\mathbf{Y}(4360)$ in $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation.
(V) BESIII has observed "charged charmoniumlike structures" the $\mathrm{Z}_{\mathrm{c}}(\mathbf{3 9 0 0})$ and the $\mathrm{Z}_{\mathrm{c}}{ }^{\prime}(4020)$.
(VI) BESIII has also observed a transition to the $\mathbf{X}(3872)$.
(VII) We are building connections.
(VIII) But there is much left to do... and a new running period has begun...

Connecting the XYZ at BESIII

