Search for low-mass Higgs and dark photons at BESIII

Vindhyawasini Prasad

(On behalf of the BESIII experiment)

Email: vindy@ihep.ac.cn

Experimental Physics Division Institute of High energy Physics Beijing, 100049, China

Motivation

- Many extensions of Standard Model (SM) introduce light weak-interacting degrees of freedom.
 - by experimental Motivated recent anomalies and theoretical prejudice.

ESA/Integral/MPE (G. Weidenspointner et al.)

- Positron excess in cosmic ray from PAMELA.
- Hints of low-mass direct dark-matter (DM) detection (DAMA, CoGent, CRESST)

Typical models: low-mass gauge bosons and/or scalars (Higgs).

Light Higgs boson search @ BESIII

Perform the search for di-muon decays of a light Higgs boson in radiatve decay of J/ ψ using 225 million J/ ψ events [Chinese Phys. C (HEP & NP) 36(10), 915 (2012)] and $1.06 \times 10^8 \, \psi(2S)$ events collected by BESIII experiment.

Introduction

- ➤ The Next-to-Minimal Supersymmetric Standard Model (NMSSM) is a Supersymmetric extensions of the SM.
- Solves the fine tuning problem of the Minimal Supersymmetric Standard Model (MSSM) by adding an additional chiral singlet superfield to the MSSM.
- ➤ NMSSM contains a total of three CP-even, two CP-odd and two charged Higgs bosons.
- ➤ The lightest CP-odd Higgs boson (A⁰) could have a mass smaller than twice the mass of the c-quark.

T. Rizzo (SLAC summer institute 2012)

- **\Leftrightarrow** Can be detectable via $J/\psi \rightarrow \gamma A^0$ decay. [PRL 39, 1304 (1977)]
- ➤ Observable branching fraction (BF) for $J/\psi \rightarrow \gamma A^0$ is possible in the range of $10^{-9} 10^{-7}$.
- The lighter state of the A^0 is defined as:

Intorduction

➤ Coupling of fermions and the CP-odd Higgs A⁰

$$L_{\text{int}}^{f\overline{f}} = -\cos\theta_A \tan\beta \frac{m_f}{v} A^0 \overline{d}(i\gamma_5) d, \quad d = d, s, b, \quad e, \mu, \tau$$

$$L_{\text{int}}^{f\bar{f}} = -\cos\theta_A \cot\beta \frac{m_f}{v} A^0 \bar{u}(i\gamma_5) u, \quad u = u, \quad \boldsymbol{c}, \quad t, \quad v_e, \quad v_\mu, \quad v_\tau$$

$$\tan \beta = \frac{v_u}{v_d}$$

E. Fullana et. al, Phys. Lett. B 653, 67 (2007)

❖ The CLEO [PRL101, 151802 (2008)], BaBar [PRL 103, 081803 (2009); PRD 87, 031102 (R) (2013)], BESIII [PRD 85, 092012 (2012)] and CMS [PRL 109, 121801 (2012)] experiments have reported negative results for the A⁰ decaying to muon pair using various decay channels and in five different A⁰ mass ranges.

Where do we stand now

Coupling of b-quark to the A^0 :

Expected BF: 10⁻³ -10⁻⁷

V. Prasad Thesis: SLAC-R-1008, PRD 87, 031102(R) (2013) PRL 103, 081803 (2009)

❖ Very strong exclusion limit is placed by BaBar experiment.

Coupling of c-quark to the A^0 :

Expected BF: 10⁻⁷ -10⁻⁹

Previous BESIII exclusion limit ranges from 4×10^{-7} - 2.1×10^{-5} depending on A⁰ mass points.

Large data-sets collected by BESIII at J/ψ resonance allow us to check this prediction once again with high precision.

Event Reconstruction

- Reconstruct the event of interests with two charged tracks and an energetic photon.
- ➤ Perform the 4-constraint (4C) kinematic fit with two charged tracks and an energetic photon to improve the Higgs mass resolutions.
- > Perform a blind analysis.
- Energy deposited in the EMC by showering particle (E_{cal}^{μ}) must be in the range of [0.1,0.3] GeV.
- The absolute value of time difference between TOF and expected muon time (Δt^{TOF}) must be less than 0.26 ns.
- The cosine of muon helicity angle ($Cos\theta_{\mu}^{heli}$) to be within range of 0.92.
- Require the momentum dependent selection criteria of penetration depth of muon counter (MuC).

Maximum likelihood fit

- Perform 1d maximum likelihood (ML) fit to the reduced mass, $m_{red} = \sqrt{m_{A^0}^2 4m_{\mu}^2}$ spectrum.
- Fits are done in some m_{red} intervals at different Higgs mass points.

Background PDF

Signal PDF

• Use sum of the two crystal-Ball (CB) functions with opposite side tails. The CB is defined as:

$$f(x \mid \mu, \sigma, \alpha, n) = C.\begin{cases} \exp\left(\frac{-(x-\mu)^2}{2\sigma^2}\right), & \frac{x-\mu}{\sigma} > -\alpha \\ \left(\frac{n}{\mid \alpha \mid}\right)^n \exp\left(-\frac{\alpha^2}{2}\right) \cdot \left(\frac{n}{\mid \alpha \mid} - \mid \alpha \mid + \frac{x-\mu}{\sigma}\right)^{-n}, & \frac{x-\mu}{\sigma} \le -\alpha \end{cases}$$

► Validate the fitting procedure using the toy data and a composite sample of inclusive J/ψ decays and $\gamma \mu^+ \mu^-$ MCs

Data vs. MC

Cocktail MC contains 10 times more statistics than 10% of J/ψ data.

The $f_0(2050)$ peak is not seen in the 10% of J/ ψ data due to low-statistics.

 \triangleright Model the ρ^0 peak using a modified Gaussian function defined as:

$$f_{L,R}(m_{\text{red}}) = exp[-(m_{\text{red}}-\mu)^2/(2\sigma_{L,R}^2 + \alpha_{L,R}(m_{\text{red}}-\mu)^2)]$$

➤ Use sum of the two CB functions to model the peaking components of $f_2(1270)$, $f_0(1710)$ and $f_4(2050)$ mesons.

Branching fractions (BFs) of peaking backgrounds

The mean and sigma values of the peaking backgrounds in MC are corrected using a control sample of $J/\psi \rightarrow l^+l^-(\gamma)$ ($l=\mu,\pi$) decay, which does not require the selection criteria of depth in MuC.

Results from m_{red} distribution

	red discrete				
Preliminary	data		MC		
Decay process	Mean (GeV/c²)	sigma (GeV/c²)	Mean (GeV/c²)	sigma (GeV/c²)	
$J/\psi \to \rho\pi$	0.725 ± 0.0030	$\sigma_L = 0.073 \pm 0.0090$	0.757 ± 0.0029	$\sigma_L = 0.072 \pm 0.0030$	
		$\sigma_R = 0.056 \pm 0.0082$		$\sigma_R = 0.055 \pm 0.0028$	
$J/\psi \to \gamma f_2(1270)$	1.228 ± 0.0037	0.0746 ± 0.0047	1.246 ± 0.0003	0.0798 ± 0.0004	
$J/\psi \to \gamma f_0(1500)$	1.416 ± 0.0002	0.0440 ± 0.0005	1.483 ± 0.0002	0.0443 ± 0.0003	
$J/\psi \to \gamma f_0(1710)$	1.712 ± 0.0008	0.0603 ± 0.0151	1.707 ± 0.0002	0.0542 ± 0.0004	
$J/\psi \to \gamma f_4(2050)$	2.065 ± 0.0028	0.0958 ± 0.0016	2.003 ± 0.0003	0.0926 ± 0.0005	

The branching fractions of the peaking backgrounds are almost consistent with their PDG values.

[PDG, Chin. Phys. C 38, 090001 (2014)]

Systematic Uncertainties

Source	Uncertainty			
Additive systematic uncertainties (events)				
N_s PDF	(0.00 - 0.58)			
Fit Bias	0.502			
Total	0.502 - 0.767			
Multiplicative systematic uncertainties (%)				
Peaking background modeling	0.00 - 6.7			
Non-peaking background modeling	3.18			
Depth in MuC	4.00			
E^{μ}_{cal}	0.05			
Δt^{TOF}	0.11			
$\cos heta_{\mu}^{hel}$	0.34			
Charged tracks	2.00			
Photon detection efficiency	1.00			
χ^2_{4C}	1.56			
J/ψ counting	1.30			
Total Preliminary	5.95 – 8.96			

Additive systematic uncertainty is based on the cocktail MC sample and multiplicative systematic uncertainty based on the different control samples of data and MC.

Expected upper limits

The expected 90% C.L. upper limit on product branching fraction of $\mathcal{B}(J/\psi \to \gamma A^0) \times \mathcal{B}(A^0 \to \mu^+ \mu^-)$ as a function of m_{A^0} in the full 2009 J/ψ data-set, based on a cocktail MC sample.

New vs. old BESIII measurements

- ➤ Based on the cocktail MC studies, we expect to achieve an order of magnitude better upper limits than previous BESIII measurements.

 PRD 85, 092012 (2012) (BESIII experiment)
- \triangleright Will unblind the full J/ ψ data very soon.

Search for dark photon at BESIII

Using the initial state radiation (ISR) process:

$$e^+e^- \rightarrow \gamma_{\mathit{ISR}}\gamma' \rightarrow \gamma_{\mathit{ISR}}\mu^+\mu^-$$
 and
$$e^+e^- \rightarrow \gamma_{\mathit{ISR}}\gamma' \rightarrow \gamma_{\mathit{ISR}}e^+e^-$$

use 2.9 fb-1 data, taken at 3.77 GeV

at

Gauge bosons in the "Dark Sector"

New Models introduce new dark force carriers (e.g. dark-photon A') with light hidden sectors.

N. Arkani-Hamad et al, PRD 79, 015014 (2009)

- ❖ Produces high-energy (~100 GeV) cosmic-ray electrons and positrons.
- ❖ Could explain cosmic ray excesses (PAMELA/ATIC features).

 \bigstar Interaction with SM via kinetic mixing with mixing strength (ϵ) .

 ε = hypercharge mixing strength.

* Kinematic mixing generates non-zero coupling of SM fermions to A': $\alpha_D = \alpha \epsilon$

B. Batell, et al, PRD79, 115008 (2009);R. Essig, et al, PRD80 015003 (2009)

Event Selection and reconstruction

➤ Use an untagged photon method to perform this analysis.

Event selection:
$$e^+e^- \rightarrow \mu^+\mu^-\gamma_{ISR}$$
 and $e^+e^- \rightarrow e^+e^-\gamma_{ISR}$

distance to interaction point	R _{xy} < 1.0 cm R _z < 10.0 cm	
acceptance	$0.4 \text{ rad} < \theta < \pi - 0.4 \text{ rad}$	
to supress background	PID	
# charged tracks	= 2	
total charge	= 0	
# photons	= 0 (untagged analysis)	
missing photon angle	< 0.1 rad or > π – 0.1 rad	
1C kinematic fit	$\chi^2_{1C} < 20$	

Di-lepton invariant mass distribution

Since objective of this search is to search for a narrow resonance, this little discrepancy between data and MC has little impact on search.

Exclusion limits

> Set the 90% C.L. upper limit using TRolke method.

Nucl.Instrum.Meth., A551, 493-503 (2005)

Kinetic mixing strength (ε^2) formula

J. D. Bjorken, R. Essig, P. Schuster, and N. Toro, Phys. Rev., D80, 075018 (2009)

Combined exclusion limits on ε^2

Old vs. new Results

Summary

- ➤ We perform the search for low-mass Higgs and dark photons using the data of BESIII experiment.
- ➤ Based on the MC studied, we expect to achieve an order of magnitude better results than the previous BESIII measurements on the light Higgs boson search [PRD 85, 092012 (2012)].
- > Will unblind the full J/ψ data after getting the permission from the review committee members appointed by BESIII internal publication board.
- We also find no evidence of dark photon production in the $\psi(3770)$ data-set and set one of most stringent exclusion limits on " ϵ " in the dark photon mass range of 1.5 to 3.4 GeV/ ϵ^2 .
- ➤ All the results are preliminary.

Thank you!

Back up Slide

BESIII Experiment

BESIII experiment is a symmetric electron positron collider experiment running as tau-charm region located at Institute of High Energy Physics, Beijing,

Super conducting magnet

✓ 1 Tesla

- Time of Flight (TOF)
 2 layer plastic scintillators
- Time resolution $\sigma_T = 100 \text{ ps}$
- Particle id

Muon system

9 layer RPC

[Nucl. Instrum. Meth. A614, 345-399 (2010)]

Multilayer drift chamber (MDC)

- He/C_3H_8 (60/40)
- 43 layers
- Momentum resolution $\sigma p/p = 0.5\%$ @ 1 GeV
- Spatial resolution $\sigma_{xy} = 130 \mu m$.

Electromagnetic calorimeter (EMC) (CsI(Tl))

- **Barrel:** 44 rings (θ_{index}) with 120 crystals
- **Endcaps consists of 6 rings**
- → 6240 crystals overall

Some important plots related to Light Higgs boson search

Dark photon search at BESIII

Fit to data

Fit of the mass spectrum in data with a polynomial and look for a peak in data:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

No peaking structure found.

Number of decay modes N_f

$$N_f^{l+l-} = \frac{\Gamma_{tot}}{\Gamma(\gamma' \to l^+ l^-)}$$

$$\Gamma_{tot} = \Gamma(\gamma^{\scriptscriptstyle !} \! \to \! e^+ e^-) + \Gamma(\gamma^{\scriptscriptstyle !} \! \to \! \mu^+ \mu^-) \cdot (1 + R(\sqrt{s}))$$

$$\Gamma(\gamma' \to l^+ l^-) = \frac{\alpha \varepsilon^2}{3m_{\gamma'}^2} \sqrt{m_{\gamma'}^2 - 4m_l^2} (m_{\gamma'}^2 + 2m_l^2) \quad \text{Phys. Rev. D88, 015032 (2013)}$$

$$R = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

taken from PDG 2014

Systematic uncertainty

Completely dominated by the uncertainty of the R ratio (everywhere above 5%)

uncertainty of the R ratio

background subtraction	< 0.5%
fitting error	< 1%
mass resolution	< 1%
R ratio	> 5%
sum	> 5%