Recent results on pi-pi amplitudes at **BES III**

Beijiang LIU (For BES III collaboration)

Institute of High Energy Physics, China

ATHOS12, Camogli Italy

Storage ring

Beam energy 1.0-2.3 GeV Energy spread: 5.16×10^{-4} Design luminosity $1 \times 10^{33}/\text{cm}^2/\text{s} @ \psi(3770)$

BES III (Beijing Spectrometer)

BSRF

BEPC II (Beijiang Electron-positron collider) 2008: test run 2009 : 106 M ψ(2S) (x4 CLEO-c), 225 M J/ ψ (x4 BESII) 2010 : 900 pb⁻¹ ψ(3770) 2011 : 1800 pb⁻¹ ψ (3770), 470 pb⁻¹ @ 4.01 GeV 2012 : **0.4 billion ψ (2S), 1 billion J/ψ**

Linac

Physics Programs @ BESIII

Light hadron physics

meson & baryon spectroscopy

- multiquark states, glueballs
 & hybrids
 - Gluon-rich process
 - I, J^{PC} filter
- two-photon physics
- form-factors

Charmonium physics:

- precision spectroscopy
- transitions and decays
- XYZ meson physics:
 - Y(4260): pi pi hc decays

The BESIII Detector

Charm physics:

- (semi-)leptonic form factors
- $f_D \& f_{Ds}$ decay constants.
- CKM matrix: V_{cd} , V_{cs}
- D0-D0bar mixing and CPV
- strong phases

QCD & tau-physics:

- precision R-measurement
- tau mass / tau decays

Precision measurement of the branching fractions of $J/\psi \rightarrow \pi^+\pi^-\pi^0$ and $\psi' \rightarrow \pi^+\pi^-\pi^0$ BES III, Phys.Lett. B710 (2012) 594

Isospin-violating decay of $J/\psi \rightarrow \gamma \pi \pi \pi$

BES III, Phys. Rev.Lett. 108, (2012) 182001

Isospin-violating decay of $J/\psi \rightarrow \gamma \pi \pi \pi$

f0(980) is extremely narrow: $\Gamma \cong 10$ MeV. PDG: Γ (f0(980)) $\cong 40^{\sim}100$ MeV.

Anomalously large isospin violation:

$$\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} \cong (17.9 \pm 4.2)\%$$

$$\frac{1}{\xi_{af}} = \frac{Br(\chi_{c1} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\chi_{c1} \to a_0(980)\pi^0 \to \eta\pi^0\pi^0)} < 1\%(90\% CL.) \quad \text{PRD, 83(2100)032003}$$

J/ψ→γππ @ BES II , Phys. Lett. B642 (2003) 441

	$J/\psi \to \gamma X, X \to \pi^+\pi^-$				
	Mass (MeV/ c^2)	$\Gamma ({\rm MeV}/c^2)$	$\mathcal{B}(\times 10^{-4})$		
f ₂ (1270)	$1262^{+1}_{-2} \pm 8$	$175^{+6}_{-4} \pm 10$	$9.14 \pm 0.07 \pm 1.48$		
$f_0(1500)$	$1466 \pm 6 \pm 20$	$108^{+14}_{-11} \pm 25$	$0.67 \pm 0.02 \pm 0.30$		
$f_0(1710)$	$1765^{+4}_{-3} \pm 13$	$145 \pm 8 \pm 69$	$2.64 \pm 0.04 \pm 0.75$		
	$J/\psi \to \gamma X, X \to \pi^0 \pi^0$				
	Mass (MeV/ c^2)	$\Gamma (\text{MeV}/c^2)$	$\mathcal{B}(\times 10^{-4})$		
f ₂ (1270)	same as charged channel		$4.00 \pm 0.09 \pm 0.58$		
$f_0(1500)$	same as charged channel		$0.34 \pm 0.03 \pm 0.15$		
$f_0(1710)$	same as charged channel		$1.33 \pm 0.05 \pm 0.88$		

J/ψ→γπ⁰π⁰ @**BES III**

Preliminary PWA results of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

covariant tensor formalism, Zou & Bugg, Eur.Phys.J. A16, 537 event-wise ML fit with isobar model (BW)

Preliminary PWA results of J/\psi \rightarrow \gamma \pi^0 \pi^0

* The parameters of $f_0(600)$ are fixed to "The sigma pole in J / psi --> omega pi+ pi-" PLB 589 149 ** Non resonant component: 0+ phsp

Preliminary PWA results of J/\psi \rightarrow \gamma \pi^0 \pi^0

		1	9 A A	
Resonances	${\rm Mass}({\rm MeV}/c^2)$	Width(MeV/ c_{\odot}^2)	$f/\psi \to \gamma X \to \gamma \pi^0 \pi^0)$	Significance
$f_0(600)$	446	578	$0.91^{+0.02+0.32}_{-0.02-0.17} \times 10^{-4}$	$> 40\sigma$
$f_2(1270)$	1255^{+1+4}_{-1-1}	177^{+2+1}_{-2-6}	$5.77^{+0.03+0.42}_{-0.03-0.34} \times 10^{-4}$	$> 40\sigma$
$f_0(1500)$	1445^{+3+9}_{-3-30}	113_{-6-1}^{+6+5}	$0.44^{+0.01+0.05}_{-0.01-0.08} \times 10^{-4}$	27.6σ
$f_{2}'(1525)$	1539^{+5+5}_{-6-11}	72_{-9}^{+10}	$0.09^{+0.01+0.08}_{-0.01-0.01} \times 10^{-4}$	13.5σ
$f_0(1710)$	1765^{+3+3}_{-3-4}	$15(-)^{-13}$	$1.11^{+0.02+0.10}_{-0.02-0.19} \times 10^{-4}$	$> 40\sigma$
$f_2(1950)$	1901^{+22+51}_{-23-5}	313_{-3-63}^{-8+65}	$0.11^{+0.01+0.06}_{-0.01-0.05} \times 10^{-4}$	11.4σ
$f_0(2020)$	1971_{-6-4}^{+6+24}	409^{+14+9}_{-13-14}	$5.31^{+0.04+0.38}_{-0.04-0.44} \times 10^{-4}$	35.6σ
$f_2(2150)$	2160^{+13+7}_{-13-11}	227^{+22+3}_{-21-31}	$0.32^{+0.02+0.10}_{-0.02-0.08} \times 10^{-4}$	14.2σ
$f_2(2340)$	2419^{+13+7}_{-13-16}	286^{+28+10}_{-26-37}	$0.28^{+0.01+0.04}_{-0.01-0.05} \times 10^{-4}$	17.8σ

 \sim

* the changes in log likelihood value and in the number of free parameters in the fit with or without a resonance are used as a measure of the significance of the resonance ** the statistical errors are determined by $\Delta \ln L = 0.5$ "Model independent" PWA

1, Bin-by-bin fit:

Decompose the angular distributions in each mass bin

2, MIPWA in Dalitz Plot Analysis:

Using interference to fix the S-wave (parameterize S-wave as a complex spline)

ATHOS 2012

EG1: J/psi→ gamma 4pi @BES I, Phys. Letts. B473 (2000) 207

EG2 : D→Kpipi @ E791, Phys. rev. D73 (2006) 023004

Tests of model independent PWA methods MC sample: $J/\psi \rightarrow \gamma \pi^0 \pi^0$ (~5% $\omega_{\nu \pi^0} \pi^0$)

Tests of model independent PWA methods: failed cases: fitting results cannot reproduce inputs

Tests of model independent PWA methods There're multi solutions

Likelihood profile of one bin in a failed bin-by-bin fit

Some of the solutions provide even better likelihoods than input

Model independent PWA has the attractive advantage.

However, there're "multi solution" problems.

- How to find all the solutions
- How to chose the right one

MIPWA can NOT always provide the correct solution. Nevertheless, it can be employed as a good check whether the model is a good fit to data.

To precisely extract the physics, more efforts are needed.

Backup

PWA amplitudes covariant tensor formalism, Zou & Bugg, Eur.Phys.J. A16 537

Partial wave amplitudes

 $U^{\mu\nu}_{\gamma f_0} = g^{\mu\nu} f^{(f_0)}$ $U^{\mu\nu}_{(\gamma f_2)_1} = \tilde{t}^{(f_2)\mu\nu} f^{(f_2)},$ $U^{\mu\nu}_{(\gamma f_{2})2} = g^{\mu\nu} p^{\alpha}_{\psi} p^{\beta}_{\psi} \tilde{t}^{(f_{2})}_{\alpha\beta} B_{2}(Q_{\Psi\gamma f_{2}}) f^{(f_{2})},$ $U^{\mu\nu}_{(\gamma f_2)3} = q^{\mu} \tilde{t}^{(f_2)\nu}_{\alpha} p^{\alpha}_{\psi} B_2(Q_{\psi\gamma f_2}) f^{(f_2)},$ $U^{\mu\nu}_{(\gamma f_4)1} = \tilde{t}^{(f_4)\mu\nu}_{\alpha\beta} p^{\alpha}_{\psi} p^{\beta}_{\psi} B_2(Q_{\Psi\gamma f_4}) f^{(f_4)},$ $U^{\mu\nu}_{(\gamma f_4)2} = g^{\mu\nu} \tilde{t}^{(f_4)}_{\alpha\beta\gamma\delta} p^{\alpha}_{\psi} p^{\beta}_{\psi} p^{\gamma}_{\psi} p^{\delta}_{\psi} B_4(Q_{\psi\gamma f_4}) f^{(f_4)},$ $U^{\mu\nu}_{(\gamma f_4)3} = q^{\mu} \tilde{t}^{(f_4)\nu}_{\alpha\beta\gamma} p^{\alpha}_{\psi} p^{\beta}_{\psi} p^{\gamma}_{\psi} B_4(Q_{\Psi\gamma f_4}) f^{(f_4)},$ t: orbital tensors B: barrier factors f: BW

Likelihood calculation

GPUPWA N. Berger, B.J. Liu and J.K. Wang, J.Phys.Conf.Ser., 219, 042031

