The BESIII Experiment at BEPCII

Changzheng YUAN (苑长征) (for the BESIII Collaboration) IHEP, Beijing

KEK, Mar. 8-10, 2012

Where is the experiment

2 days + 2 hour if one follows the google recommended travel plan.

Where is the experiment

45 kilometers = 1 hour by taxi, or 1.5 hours by subway

The Beijing Electron Positron Collider

The Beijing Electron Positron Collider

Founded: 1984, Ecm=2-5 GeV 1989-2005 (BEPC): L_{peak}=1.0x10³¹/cm²s at Ecm=3.77 GeV 2008-now (BEPCII): L_{peak}=6.5x10³²/cm²s at Ecm=3.77 GeV

BEPC II: Large crossing angle, double-ring

BESIII Detector

CsI(TI) calorimeter, 2.5% @ 1 GeV

Luminosity since startup

BESIII [and BESII, CLEO-c] data

Data	BESII	CLEOc			BESIII (2012)	
J/ψ	58 M			225 M (+1.0 B)		
ψ'	14 M		26 M 10		5 M (+0.7B~1.0 B)	
ψ"	0.033 fb ⁻¹		0.818 fb ⁻¹	2.9 fb ⁻¹		
ψ (4040)	-	0.006 fb ⁻¹			0.5 fb ⁻¹	
	6.4 pb ⁻¹		21 pb ⁻¹	44	↓ pb⁻¹ (+120 pb⁻¹)	
Continuum	(√s=3.65 GeV)	(1	s=3.67 GeV)	(√s=3.65 GeV)		
Performan	ce BESII	BESII			BESIII	
σ p/p	1.7%/√1+p	1.7%/√1+p²		eV	0.5%@p=1GeV	
σΕ/Ε	22% /√E	22% /√E		eV	2.5%@E=1GeV	
PartID	dE/dx+TO	dE/dx+TOF		Ή	dE/dx+TOF	
Coverage	80%	80%			93%	

BESIII Physics Programs

This is not a BESIII logo!

- B (looks like DD for D or charm physics)
- E (looks like cc for charmonium physics)
- S (for light hadron Spectroscopy [+exotics])
- T (for tau physics, looks like a Roman number "III")¹⁰

Charm physics

No results yet!

- Decay constants
- Form factors and CKM matrix elements
- Strong phase and impact on ϕ_3 measurements
- D mixing & CPV
- Rare decays

Charm cross section at ψ" peak D+D-: ~2.8 nb; D0D0: ~3.6 nb N^{prod} in 2.9 fb⁻¹ N(D+D-):~8 M; N(D0D0): ~10 M

Clean tagged charms

In 2.9 fb⁻¹ data, we tagged 1.6M D⁺ and 2.7M D⁰

Pure leptonic decays of D⁺

BESIII MUC helps reduce hadron background

13

N^{obs}(D⁺→ $\mu^+\nu$)~400 → σ B/B~5%; $\sigma f_D/f_D$ ~2.5% Statistical error limited, systematic error on B ~ 1.5% level In 20 fb⁻¹ data, errors can be scaled by 1/2.6 N^{obs}(D⁺→ $\mu^+\nu$)~2700 → σ B/B~2%⊕1.5%; $\sigma f_D/f_D$ ~1%⊕0.8% [f_D : PDG: ±4%; LQCD: ±2%]

Semi-leptonic decays of D⁰

CLEOc with 818 pb⁻¹ data, ~ 1400 events $D^0 \rightarrow \pi^- e^+ v$ BESIII with 2.9 fb⁻¹ data, ~ 6000 events

Semi-leptonic decays of D⁰

• In 2.9 fb⁻¹ data, with 2.7M tagged D⁰ events

 $N^{obs}(D^0 \rightarrow K^- e^+ v) \sim 60k$

 $N^{obs}(D^0 \rightarrow \pi^- e^+ v) \sim 6k$

Statistical error limited, systematic error on <u>B ~ 2% level [CLEOc~1%]</u>

- In 20 fb⁻¹ data, statistical errors negligible, systematic errors dominant, need to investigate how to reduce them (tracking, PID, bkg subtraction, q² smearing, FSR, ...)
- Form factor measurement depends on parameterization.
- Vcs, Vcd extraction limited by FF uncertainty from LQCD.

[Kaneko, this workshop] 16

BESIII took 0.5/fb data at 4.01 GeV! 4.17 GeV vs. 4.01 GeV: $\sigma(D_s D_s) = 0.27 \text{ nb} @ 4.01$ $\sigma(D_s D_s^*) = 0.92 \text{ nb} @ 4.17$ [Need to detect one

additional low energy photon at 4.17 GeV]

Data taking in May 2011 for XYZ particle search & for D_s study!

D_s tag at BESIII

@ 4.01 GeV with ~0.5 fb⁻¹ data, single-tag sample:

- About 11k tagged Ds (44k at CLEOc at 4.17 GeV)
- f_{Ds} (both μ and τ modes) measurement underway
- Uncertainty dominated by statistics of the signal events

18

Decay constant of Ds

Decay constant of Ds

1% in experiment \oplus 1% in LQCD ~ 3.5 MeV (~3 σ effect!)

A.S. Kronfeld, arXiv: 1203.1204 [hep-lat]

$$\psi_{-} = \frac{1}{\sqrt{2}} \left(\left| D^{0} \right\rangle \right| \overline{D}^{0} \left\rangle - \left| \overline{D}^{0} \right\rangle \right| D^{0} \right\rangle \right)$$

The correlated decay rate is

$$\Gamma_{ij} = \left| \left\langle i \right| D^{0} \right\rangle \left\langle j \right| \overline{D^{0}} \right\rangle - \left\langle j \right| D^{0} \right\rangle \left\langle i \right| \overline{D^{0}} \right\rangle \right|^{2}$$

By investigating the correlation between the $\overline{D}{}^{0}D{}^{0}$ decays, the strong phase between Cabibbo Suppressed / Favored decays and $\overline{D}{}^{0}D{}^{0}$ mixing/CPV information can be extracted. ²¹

Physics via Coherence

- 20 fb⁻¹ data at ψ " peak [72M produced $\overline{D}^0 D^0$] D^0
- D⁰ mixing: $R_M = (x^2+y^2)/2 \sim 10^{-4}$; y ~ 0.003
- CP violation in D sector: O(10⁻³)
- Uncertainty of ϕ_3/γ due to unknown ralative phase on Dalitz decay $\overline{D}^0/\overline{D}^0 \rightarrow K_s h^+h^-$ will be reduced to less than 1 degree.

 \overline{D}^0

 e^+

В

D⁰D⁰ mixing at threshold

Without mixing in D⁰, the following process is forbidden due to Boson-Einstein statistics, with mixing happened, it is allowed.

$$e^+e^- \rightarrow \psi(3770) \rightarrow D^0_H D^0_L \rightarrow (K^{\pm}\pi^{\mp})_H (K^{\pm}\pi^{\mp})_L$$

 $R_M = (x^2 + y^2)/2$ can be measured using the ratios

$$R_{M} = \frac{N[D^{0}\overline{D}^{0} \to (K^{-}\pi^{+})(K^{-}\pi^{+})]}{N[D^{0}\overline{D}^{0} \to (K^{-}\pi^{+})(K^{+}\pi^{-})]},$$

 $\frac{N[D^0\overline{D}^0 \rightarrow (K^-e^+/\mu^+\nu)(K^-e^+/\mu^+\nu)]}{N[D^0\overline{D}^0 \rightarrow (K^-e^+/\mu^+\nu)(K^+e^-/\mu^-\nu)]}$

Reaction	Events	Sensitivity
	RS ($\times 10^4$)	$R_M \; (imes 10^{-4})$
$\psi(3770) \to (K^- \pi^+)(K^- \pi^+)$	10.4	1.0
$\psi(3770) \longrightarrow (K^-e^+\nu)(K^-e^+\nu)$	8.9	
$\psi(3770) \rightarrow (K^- e^+ \nu)(K^- \mu^+ \nu)$	8.1	3.7
$\psi(3770) \to (K^- \mu^+ \nu)(K^- \mu^+ \nu)$	7.3	

X.D. Cheng et al., PRD75, 094019 (2007)

23

D⁰D⁰ mixing at threshold

For C=-1 initial $\overline{D}^0 D^0$ state, y can be expressed as function of double tag rates to lepton and CP eigenstate and single tag rate to CP eigenstate:

$$y = \frac{1}{4} \left(\frac{\Gamma_{l;f_+} \Gamma_{f_-}}{\Gamma_{l;f_-} \Gamma_{f_+}} - \frac{\Gamma_{l;f_-} \Gamma_{f_+}}{\Gamma_{l;f_+} \Gamma_{f_-}} \right)$$
$$\Delta(y) = \frac{\pm 26}{\sqrt{N(D^0 \overline{D}^0)}} = \pm 0.003$$

Depends on assumed CP-tagging efficiency and BRs, but the uncertainty should not change much.

X.D. Cheng et al., PRD75, 094019 (2007)

24

K

CP violation at **BESIII**

CP violating asymmetries can be measured by searching for events with two CP odd or two CP even final states: $\pi^+\pi^-$, K^+K^- , $\pi^0\pi^{0}$, Ks π^0

for the decay of $\psi'' \rightarrow D^0 \overline{D}^0 \rightarrow f_1 f_2$ $CP(f_1 f_2) = CP(f_1) \cdot CP(f_2) \cdot (-1)^L = CP(\psi'') = +$

 A_{CP} sensitivity : $\Delta A \sim O(10^{-3})$

CP violation in mixing can be measured with:

$$A_{SL} = \frac{\Gamma_{l+l+} - \Gamma_{l-l-}}{\Gamma_{l+l+} + \Gamma_{l-l-}} = \frac{1 - |q/p|^4}{1 + |q/p|^4}$$

With $10^8 \text{ DD pairs in } (K^+e^-v)(K^+e^-v) \text{ mode, } |q/p| \text{ can be measured with } (20-30)\% \text{ accuracy. Current world averaged value is } 0.89\pm0.16$.

CPV in D decay at BESIII

Direct CP violation in D decays is expected to be small in SM.

For CF and DCS decays direct CP violation requires New Physics. Exception: $D^{\pm} \rightarrow K_{S,L}\pi^{\pm}$ with A_{CP} =-3.3×10⁻³.

For Singly Cabibbo Suppressed (SCS) decays SM CPV could reach 10⁻³.

$$A_{CP} = \frac{\Gamma(D \to f) - \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$$

D.S.Du , EPJC5,579(2007) Y. Grossman et al PRD75, 036008(2007)

At BESIII, CP asymmetry can be tested with $O(10^{-3})$ sensitivity for many final states.

The weak phase φ_3/γ

Interference between tree-level decays; theoretically clean

Three methods for exploiting interference (choice of D⁰ decay modes):

- Gronau, London, Wyler (GLW): Use CP eigenstates of D^{(*)0} decay, e.g. $D^0 \rightarrow K_s \pi^0$, $D^0 \rightarrow \pi^+ \pi^-$
- Atwood, Dunietz, Soni (ADS): Use doubly Cabibbo-suppressed decays, e.g. $D^0 \rightarrow K^+\pi^-$
- Giri, Grossman, Soffer, Zupan (GGSZ) / Belle: Use Dalitz plot analysis of 3body D⁰ decays, e.g. $K_{s} \pi^{+} \pi^{-}$ 27

From Bondar

B⁻ \rightarrow D(K_sh⁺h⁻)K⁻Dalitz plot for ϕ_3/γ at B factory

A powerful choice of common state f(D) in K_sh⁺h⁻ BABAR: PRL 105, 121801 (2010) Belle : PRD 81, 112002 (2010)

Differents between B⁻ and B⁺ Dalitz plots allow ϕ_3/γ extracted in unbinned fit. However, need to understand different amplitudes from D⁰ and \overline{D}^0 decay modes across Dalitz space, esp. variation in strong phase.

 $B^{\pm} \rightarrow (D \rightarrow K^{0}{}_{s}\pi^{+}\pi^{-})K^{\pm}$

B factories: construct Dalitz plot model of D with flavor-tagged decays, estimated model uncertainty of 3-9 degrees, which is « statistical error. But super-B and LHCb will start to be limited by this model uncertainty – Highly desirable to have precision model independent approach! 28

CP-tagged Dalitz plots of D⁰ \rightarrow K_s $\pi^+\pi^-$

Clear difference between CP-even and CP-odd tagged Dalitz plots.


```
CLEOc:
```

PRD82, 112006 (2010)

- Different binning causes
 different results!
- Projected uncertainty on ϕ_3/γ varies from 1.7 to 3.9°!
- Bias at O(1⁰) level is observed!
- → Low statistics in each bin!

BESIII will reduce this error to less than 1°!

Sensitivities for rare charm decay

- > D \rightarrow V γ will be reached at 10⁻⁶
 - $D^0 \rightarrow \phi \gamma$, K* γ will be confirmed and improved
 - $D^0 \rightarrow \rho\gamma$, $\omega\gamma$ will be improved or found
- > $D^0 \rightarrow \gamma \gamma$ can be measured with tag or without tag the sensitivity will be 10^{-6}
- $> D \rightarrow XI^+I^-$ can be reached at 10⁻⁶

BESIII will reach contribution from long distance

- $> D^0 \rightarrow l^+l^-$ will be reached at 10^{-6} [<10⁻⁸ @LHCb: this workshop]
- $> D^+ \rightarrow e^+ v$: 10⁻⁶ (SM: 10⁻⁸)

We really donot have that much compared with LHCb (LHCc?). ³¹

Charmonium physics

Charmonium + XYZ states

- Below DD threshold: spin-singlets, decay properties
- Above $\overline{D}D$ threshold: excited ψ s, XYZ states, decay properties

$\psi(2S) \rightarrow \pi^0 h_c$ transition

BESIII: PRL 104, 132002 (2010) Mass: 3525.40±0.13±0.18 MeV Width: 0.73±0.45±0.28 MeV (<1.44 MeV @ 90% C.L.)

CLEOc: PRL101, 182003 (2008) Mass: 3525.28±0.19±0.12 MeV Width: fixed to 0.9 MeV

 $\Delta M_{hf} = \langle M(^{3}P_{J}) \rangle - M(^{1}P_{1})$ Agrees with zero within ~0.5 MeV

Information on spin-spin interaction.

Combined inclusive and E1-photon-tagged spectrum (First measurements)

B(ψ'→ π^0 h_c) = [8.4±1.3(stat.) ±1.0(syst.)]×10⁻⁴ B(h_c→γη_c) = [54.3±6.7(stat.) ±5.2(syst.)] % Agree with predictions of Kuang, Godfrey, Dudek, et al. ³⁴

$\psi(2S) \rightarrow \pi^0 h_c$, 16 η_c exclusive decays

Simultaneous fit to π^0 recoiling mass $M(h_c) = 3525.31 \pm 0.11 \pm 0.15 \text{ MeV/c}^2$ $\Gamma(h_c) = 0.70 \pm 0.28 \pm 0.25 \text{ MeV}$ $N = 832 \pm 35$ $\chi^2/d.o.f. = 32/46$

Consistent with CLEO-c exclusive $M(h_c)=3525.21\pm0.27\pm0.14$ MeV N = 136±14 PRL101, 182003(2008)

BESIII preliminary

35

η_{c} the lightest charmonium state

η_c resonance parameters from $\psi' \rightarrow \gamma \eta_c$

E

Simultaneous fit with modified Breit-Wigner (hindered M1) with considering interference between η_c and non- η_c decays 37

Mass and Width of η_c

Mass = $2984.3 \pm 0.6_{stat} \pm 0.6_{syst}$ MeV/c2arXiv:1111.0398,
submitted to PRLWidth = $32.0 \pm 1.2_{stat} \pm 1.0_{syst}$ MeVsubmitted to PRL $\phi = 2.40 \pm 0.07_{stat} \pm 0.08_{syst}$ rad or $4.19 \pm 0.03_{stat} \pm 0.09_{syst}$ rad

World average in PDG2010 uses earlier measurements.

Observation of $\psi' \rightarrow \gamma \eta_c'$

 ${\mathcal E}$

> η_c(2S) signal: modified BW (M1) with fixed width (Resolution extrapolated from χ_{cJ})
 > χ_{cJ} signal: MC shape smeared with Gaussian
 > BG from e⁺ e⁻→ K_sKπ (ISR), ψ' → K_sKπ (FSR), ψ' → π⁰K_sKπ: are measured from data

Preliminary results on

$$\psi' \rightarrow \gamma \eta_{c}' \rightarrow \gamma KsK\pi$$

 $> M(\eta_{c}')=3638.5\pm 2.3_{stat}\pm 1.0_{sys} (MeV/c^2)$
 $> Br(\psi' \rightarrow \gamma \eta_{c}' \rightarrow \gamma KsK\pi)=(2.98\pm 0.57_{stat}\pm 0.48_{sys}) \times 10^{-6}$
 $Br(\eta_{c}(25)\rightarrow KK\pi)=(1.9\pm 0.4\pm 1.1)\%$ from BaBar
 $Br(\psi' \rightarrow \gamma \eta_{c}')=(4.7\pm 0.9_{stat}\pm 3.0_{sys}) \times 10^{-4}$

CLEO-c: $<7.6 \times 10^{-4}$ (PRD81,052002(2010))Potential model: $(0.1-6.2) \times 10^{-4}$ (PRL89,162002(2002))

BESIII preliminary

Production Rates of XYZ at BESIII

- No theoretical calculation on $\psi(3S) \rightarrow \gamma + XYZ$ if they are exotic states [neither on $\psi(2D)$, $\psi(4S)$]
- Assuming $M(\chi_{cJ}(2P)) \sim 3930 \text{ MeV}$
 - B(ψ(3S)→γχ'_{cJ})=(7, 3, 1)x10⁻⁴ for J=2,1,0
 - [T. Barnes & S. Godfrey, PRD69, 054008 (2004)
 - E. Eichten et al., Rev. Mod. Phys. 80, 1161 (2008)]
 - As masses of the $\chi_{cJ}(2P)$ states are very different from the expectation of the potential models. S-D mixing will also affect the predictions. BRs could be very different.
- Can we observe the X(3872) if it is the χ'_{c1} and the production rate is $3x10^{-4}$?

S Light hadrons: normal & exotic

 Hadrons are composed from 2 (meson) or 3 (baryon) quarks

Quark model

- QCD allows hadrons with $N_{quarks} \neq 2, 3$
 - glueball :
 - hybrid :

- N_{quarks} = 0 (gg, ggg, ...) N_{guarks} = 2 or more + excited gluon
- Multiquark state : N_{quarks} > 3
- molecule : bound state of more than 2 hadrons

S Enhancement at ppbar threshold

- Observed at BESII in 2003
 - PRL91, 022001
 - M=1861⁺³-10⁺⁵-25 MeV
 - Width < 38 MeV (90% CL)</p>
 - Agree with spin zero expectation
 - Confirmed at BESIII (& CLEOc)
 - M=1861.6±0.8 (stat.) MeV
 - Width<8 MeV @ 90% C.L.
 - →– M=1859⁺⁶-13⁺⁷-26 MeV
 - Width < 30 MeV (90% CL)</p>
- Many possibilities:
 - Normal meson?
 - ppbar bound state/ multiquark/ glueball/ ...

Partial wave analysis of $J/\psi \rightarrow \gamma p \bar{p}$

arXiv:1112.0942, PRL (in press)

 $J^{PC} = 0^{-+}$ FSI correction from A. Sirbirtsen et al., PRD 71, 054010 (2005) $M = 1832^{+19}_{-5} \text{ (stat.)}^{+18}_{-17} \text{ (syst.)} \pm 19 \text{ (model) } \text{MeV}/c^2$ $\Gamma = 13 \pm 39 \text{ (stat.)}^{+10}_{-13} \text{ (syst.)} \pm 4 \text{ (model) } \text{MeV}/c^2, \text{ (< 76 MeV}/c^2)}$ $BB = (9.0^{+0.4}_{-1.1} \text{ (stat.)}^{+1.5}_{-5.0} \text{ (syst.)} \pm 2.3 \text{ (model)}) \times 10^{-5}$

FSI changes mass from 1861 MeV to 1832 MeV! ⁴⁵

More states decay into $\eta' \pi^+ \pi^-$

States in $J/\psi \rightarrow \omega \eta \pi^+ \pi^-$

Fitting with three resonances (acceptance weighted BWxGaussian) \succ Background component described by Polynomial function

Resonance	${\rm Mass}~({\rm MeV}/c^2)$	Width (MeV/c^2)	Branch ratio (10^{-4})	arXiv: 1107.1806
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0\pm3.1^{+2.0}_{-1.5}$	$1.25\pm0.10^{+0.19}_{-0.20}$	PRL107, 182001
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$	(2011)
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26^{+0.72}_{-0.36}$	47

η(1405)→f₀(980)π⁰ in J/ψ→γπππ

- > Observed in two modes, $\eta(1405)$ mass and width agree with PDG
- Large Isospin-violating decay rate, $B(f_0\pi^0)/B(a_0\pi^0) \sim 18\%!$
- A possible explanation is KK*(K) loop, triangle singularity

ψ' Cross Section Scan

- ✤ No efficiency correction
- Cross section in arbitrary unit

Published in NIMA 659, 21 (2011)

PDG2010: 3686.09 ± 0.04 MeV $\Delta m=17\pm50$ keV Accuracy: $2x10^{-5}$ Beam spread: 1.65 ± 0.04 MeV

τ Mass measurement in 2012

Data at 4 energy points were taken, ~5 pb⁻¹ at the τ threshold Expect statistical precision is ±0.3 MeV, systematic error <0.1 MeV More data expected in 2012 to reduce statistical precision to 0.1 MeV

53

- BEPCII has reached 2/3 of its designed luminosity goal of 10³³/cm²/s.
- BESIII was running very well and has accumulated world largest data samples at J/ψ, ψ', ψ'', and ψ(4040) peaks.
- Lots of results have been published and more to come soon (esp. on charm)!

backup

T BEPC Energy Measurement System

Charm Physics: CKM matrix

20 fb⁻¹ $\overline{D}D$ pairs at $\psi(3770)$ and 20 fb⁻¹ $D_s^{(*)+}D_s^{(*)-}$ pairs at $\psi(4040)$ or $\psi(4160)$ for high precision charm physics.

The Goal: Measure all CKM matrix elements and associated phases 57 in order to over-constrain the unitary triangles.