Overview of the BESIII results

Yanping Huang For BESIII Collaboration

Institute of High Energy Physics

Meson2012, 31st May-5th June, Krakow, Poland

Outline

- Status of BEPCII/BESIII
- Highlight of BESIII results
 - Light hadrons spectroscopy
 - Charmonium transitions and decays
 - Charm decays

• Summary

The BESIII Detector

NIM A614, 345 (2010)

The **BESIII** Collaboration

BESIII commissioning

- July 19, 2008: first e⁺e⁻ collision event in BESIII
- Nov. 2008: ~ 14M ψ (2S) events for detector calibration
- 2009: 106M ψ(2S) 4×CLEOc 225M J/ψ 4×BESII
- •2010: 900 pb⁻¹ ψ(3770)
- ・2011: 2000 pb⁻¹ ψ(3770) 470 pb⁻¹ @ 4.01 GeV

World's largest samples of J/ψ , $\psi(2S)$ and $\psi(3770)$ (and still growing)

3.5×CLEOc

Peak luminosity reached 6.5 X 10³² @3770 MeV

• 2012: tau mass measurement
 ψ(2S): 0.3 billion; J/ψ: from ~April 1

Physics Programs @ BESIII

Light hardron physics

- -meson & baryon spectroscopy -threshold effects -multiquark states
- -glueballs & hybrids -two-photon physics
- -form-factors

Charmonium physics:

precision spectroscopy
 transitions and decays

Charm physics:

- (semi-)leptonic form factors
- f_D & f_{Ds} decay constants.
- CKM matrix: V_{cd} , V_{cs}
- D⁰-D⁰ mixing and CPV
- strong phases

QCD & τ -physics:

- precision *R-measurement*
- -т mass /т decays

<u>XYZ meson</u> <u>physics:</u> -Y(4260)ππh_c decays

Recent Results on Light Hadron Spectroscopy

- $p\overline{p}$ mass threshold structure in $J/\psi \rightarrow \gamma p\overline{p}$
- X(1835) and two new structures in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$
- $\eta(1405)$ in $J/\psi \to \gamma f_0(980)\pi^0, f_0(980) \to 2\pi$
- PWA of $J/\psi \rightarrow \gamma \eta \eta$
- PWA of $J/\psi \rightarrow \gamma \omega \phi$

Observation of X(pp̄) @ BESII

Theoretical interpretation:

- > conventional meson?
- $> p\overline{p}$ bound state/multiquark
- ➢ glueball
- ➢ Final state interaction (FSI)
- **/**...

PRL 91 (2003) 022001

Confirmation @ BESIII and CLEOc

Fit with one resonance at BESII did:

 $\psi' \rightarrow \pi^+ \pi^- J / \psi, J / \psi \rightarrow \gamma p \overline{p}$

Chinese Physics C 34, 421 (2010)

PRD 82, 092002(2010)

Several non-observations

PWA of $J/\psi \rightarrow \gamma p\overline{p}$ @BESIII

• PWA of J/ψ->γpp was first performed

- The fit with a BW and S-wave
 FSI(I=0) factor can well describe ppb mass threshold structure.
- It is much better than that without FSI effect, and $\Delta 2 \ln L = 51 (7.1\sigma)$
- Different FSI models→Model
 dependent uncertainty

Spin-parity, mass, width and B.R. of X($p\bar{p}$): $J^{pc} = 0^{-+}$

>6.8σ better than other J^{pc} assignments.

 $M = 1832_{-5}^{+19} (stat)_{-17}^{+18} (syst) \pm 19 (mod) MeV/c^{2}$

 $\Gamma = 13 \pm 20(\text{stat})^{+11}_{-33}(\text{syst}) \pm 4(\text{mod})\text{MeV/c}^2 \text{ or } \Gamma < 76\text{MeV/c}^2 @ 90\% C.L.$

 $B(J/\psi \rightarrow \gamma X(p\overline{p}))B(X(p\overline{p}) \rightarrow p\overline{p}) = (9.0^{+0.4}_{-1.1}(\text{stat})^{+1.5}_{-5.0}(\text{syst}) \pm 2.3(\text{mod})) \times 10^{-5}$

Mpp threshold structure of $\psi' \rightarrow \gamma p \overline{p}$ @BESIII

Observation of X(1835) at BESII

BESII results(Statistical significance~7.7 σ): M =1833.7 ± 6.1(stat) ± 2.7(syst)MeV/c² Γ = 67.7 ± 20.3(stat) ± 7.7(stat)MeV/c² B(J/ ψ \rightarrow $\gamma X(1835))B(X(1835) \rightarrow \pi^{+}\pi^{-}\eta')$ = (2.2±0.4(stat)±0.4(syst))×10⁻⁴

Theoretical interpretation: > pp̄ bound state > η excitation > > Whether are X(pp̄) and X(1835) from the same source?

X(1835) in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ at BESIII

PRL 106, 072002 (2011)

resonance	$M(\text{ MeV}/c^2)$	$\Gamma(\text{ MeV}/c^2)$	significance		
X(1835)	1836.5 ± 3.0	190.1 ± 9.0	$>> 20\sigma$		
X(2120)	2122.4 ± 6.7	84 ± 16	$> 7.2\sigma$		
X(2370)	2376.3 ± 8.7	83 ± 17	$> 6.4\sigma$		

For the X(1835):

$$BR(J/\psi \to \gamma X(1835)) \bullet BR(X(1835) \to \pi^+ \pi^- \eta')$$

 $= (2.87 \pm 0.09(stat)_{-0.52}^{+0.49}(syst)) \times 10^{-4}$

The polar angle of the photon in J/psi center of mass system is consistent with expectation for a pseudoscalar

PWA is needed, inference among the resonances needs to be considered.

Why are X(2120)/X(2370) interesting?

✓ It is the first time in J/ ψ radiative decays resonant structures are observed in the 2.4 GeV/c² region,

it is interesting since:

LQCD predicts that the lowest lying pseudoscalar glueball: around 2.4 GeV/c².

J/ψ-->γππη' decay is a good channel for finding 0⁻⁺ glueballs.

Nature of X(2120)/X(2370)
 pseudoscalar glueball ?
 η/η' excited states?
 ΔΔ bound state?

PRD82,074026,2010 (J.F. Liu, G.J. Ding and M.L.Yan) PRD83:114007,2011 (J.S. Yu, Z.-F. Sun, X. Liu, Q. zhao), and more...

.

Anomalous line shape of $f_0(980)$ in $J/\psi \rightarrow \gamma 3\pi$

much narrower than the world average (PDG 2010: 40-100 MeV/ c^2)

A possible explanation is KK* loop, Triangle Singularity (TS) (J.J. Wu et al, PRL 108, 081803(2012))

$$\xi_{af} = \frac{Br(\chi_{c1} \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\chi_{c1} \to a_0(980)\pi^0 \to \eta\pi^0\pi^0)} < 1\%(90\% \ C.L.) \text{ PRD, 83(2100)032003}$$

 a_0 -f₀ mixing alone can not explain the branching ratio of η (1405)

New results on $\eta' \rightarrow 3\pi$

For the decay $\eta' \rightarrow \pi^0 \pi^0 \pi^0$, it is two times larger than the world average value.

Comparison: Isospin violations in $\eta' \rightarrow \pi \pi \pi$:

$$\frac{BR(\eta' \to \pi^+ \pi^- \pi^0)}{BR(\eta' \to \pi^+ \pi^- \eta)} \approx 0.9\%, \quad \frac{BR(\eta' \to \pi^0 \pi^0 \pi^0)}{BR(\eta' \to \pi^0 \pi^0 \eta)} \approx 1.6\%$$

Study of nn system

- First observed f₀(1710) from J/ψ radiative decays to ηη by Crystal Ball in 1982.
- LQCD predicts:

0⁺⁺ : 1710 ± 50 ± 80

- Crystal Barrel Collaboration (2002) analyzed the three final states $\pi^{0}\pi^{0}\pi^{0}$, $\eta\pi^{0}\pi^{0}$ and $\pi^{0}\eta\eta$ with K matrix formalism. Found a 2⁺⁺ (~1870), but no f₀(1710).
- E835 (2006): ppbar $\rightarrow \pi^0 \eta \eta$, found f₀(1500) and f₀(1710).
- WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$.

Preliminary PWA results of J/ ψ -> $\gamma\eta\eta$ @BESIII

$M_{\omega\Phi}$ threshold enhancement in J/ ψ -> $\gamma\omega\Phi$

 $J/\psi \rightarrow \gamma \omega \phi$ (DOZI)

Preliminary PWA results of J/ ψ -> $\gamma\omega\Phi$ @BESIII

Resonance	\mathbf{J}^{PC}	${ m M}({ m MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	Events	ΔS	$\Delta \mathrm{ndf}$	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	$> 30\sigma$
$f_2(1950)$	2^{++}	1944	472	665 ± 40	211	2	$> 10\sigma$
f ₀ (2020)	0++	1992	442	715 ± 45	100	2	$> 10\sigma$
$\eta(2225)$	0-+	2240	190	70 ± 30	23	2	6.4σ
phase space	0-+	2400	5000	319 ± 24	45	2	$> 8\sigma$

Is X(1810) the f0(1710)/f0(1790) or new state?

Recent results on Charmonium spectroscopy

- Properties of h_c
- Mass and width of η_c
- Observation evidence of $\psi' \rightarrow \gamma \eta_c(2S)$
- First observation of $\psi' \gamma \gamma J/\psi$
- Multipole in $\psi' \rightarrow \gamma \chi_{c2}$

Property of h_c

 First evidence: E835 in pp→h_c→γη_c (PRD72,092004(2005))

CLEO-c observed h_c in ee→ψ'→π⁰h_c, h_c→γη_c ΔM_{hf}(1P)=0.08±0.18±0.12 MeV/c²

(PRL104,132002(2010))

 Study isospin forbidden transition: B(Ψ' → π⁰h_c)

 Measure as well the E1 transition: B(h_c → γη_c)

 M(h_c) gives access to nyperfine splitting of 1P states: ΔM_{hf}(1P)=M(h_c)-1/9(M(χ_{c0})+3M(χ_{c1})+5M(χ_{c2}))

$\psi \rightarrow \pi^{\theta} h_c @$ BESIII

Select inclusive π⁰ (ψ'→π⁰h_c)
Select E1-photon in h_c→γη_c (w/o E1 tagged)
E1-tagged selection gives M(h_c)=3525.40±0.13±0.18MeV (ΔM_{hf}(1P)=0.10±0.13±0.18MeV/c²) Γ(h_c)=0.73±0.45±0.28MeV (first measurement) (<1.44MeV at 90% CL) Br(ψ'→π⁰h_c)×Br(h_c→γη_c)= (4.58±0.40±0.50)×10⁻⁴

- > E1-untagged selection gives Br($\psi' \rightarrow \pi^0 h_c$) = (8.4±1.3±1.0) ×10⁻⁴
- Combining branching fractions leads to Br(h_c → γ η_c) = (54.3±6.7±5.2)% (first measurement)

$\psi' \rightarrow \pi^{\theta} h_c, h_c \rightarrow \gamma \eta_c, \eta_c$ exclusive decays @ BESIII

$\eta_c(1S)$

- The lowest lying S-wave spin singlet charmonium, discovered in 1980 by MarkII
- Parameters:

 $J/\psi, \psi'$ radiative transition: $M \sim 2978.0 \text{MeV}/c^2$, $\Gamma \sim 10 \text{MeV}$ $\gamma\gamma$ process: $M = 2983.1 \pm 1.0 \text{ MeV}/c^2$, $\Gamma = 31.3 \pm 1.9 \text{ MeV}$

Interference with non-resonant is significant !

Relative phase ϕ values from each mode are
consistent within 3σ ,M: 2984.4 \pm 0.5 \pm 0.6 MeV
 Γ : $30.5 \pm 1.0 \pm 0.9$ MeV
 ϕ : $2.35 \pm 0.05 \pm 0.04$ rad
BESIII arXiv:1111:0398 accepted by PRL

Comparison of the mass and width for η_c

The world average in PDG2010 was using earlier measurements

Hyperfine splitting: $\Delta M(1S) = 112.6 \pm 0.8$ MeV

Consistent with B factory results in other production mechanisms. Agree with lattice QCD calculations of the charmonium hyperfine splitting

η_c (2S)

Crystal Ball's "first observation" of $\psi' \rightarrow \gamma X$ (M=3.592, B=0.2%-1.3%) never been confirmed. *PRL 48 70 (1982)*

"Seen" $\eta_c(2S)$ from inclusive photon spectrum of ψ decays. Branch ratios and parameters are far from modern measurements.

Observed in different processes other than radiative transition

Experiment	$M \; [{ m MeV}]$	$\Gamma [MeV]$	Process
Belle [1]	$3654 \pm 6 \pm 8$		$B^{\pm} \to K^{\pm} \eta_c(2S), \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
CLEO $[2]$	$3642.9 \pm 3.1 \pm 1.5$	$6.3 \pm 12.4 \pm 4.0$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [3]	$3630.8 \pm 3.4 \pm 1.0$	$17.0 \pm 8.3 \pm 2.5$	$\gamma\gamma \to \eta_c(2S) \to K_S K^{\pm} \pi^{\mp}$
BaBar [4]	$3645.0 \pm 5.5^{+4.9}_{-7.8}$		$e^+e^- \rightarrow J/\psi c\bar{c}$
PDG [5]	3638 ± 4	14 ± 7	

M1 transition $\psi' \rightarrow \gamma \eta_c(2S)$

CLEO found no signals in 25M ψ' . $BF(\psi' \rightarrow \gamma \eta_c(2S)) < 7.6 \times 10^{-4}$

CLEO: PRD 81 052002 (2010)

Experimental challenge : search for photons of 50 MeV

Observation of $\psi' \rightarrow \gamma \eta_c(2S) \rightarrow \gamma (K_s K \pi)$ @BESIII

Width fixed to 12 MeV (world ave.) Events: 50.6 \pm 9.7; Significance >6.0 σ !

Mass = $3638.5 \pm 2.3 \pm 1.0 \text{ MeV/c}^2$

PRL 89 162002 (2002)

$\psi' -> \gamma \gamma J/\psi$

 Two photon transitions are well known in excitations of molecules, atomic hydrogen, and positronium.

[F. Bassani etal, PRL 39, 1070 (1977); A. Quattropani etal, PRL 50, 1258 (1983)]

- Never been observed in the quarkonium system. CLEOc: upper limit of $Br(\psi' \rightarrow \gamma\gamma J/\psi)$ is 1×10^{-3} (PRD 78,011102(2008))
- Observation helpful to understand heavy quarkonium spectrum & strong interaction

Theoretically:

- Potential models give discrete spectra $(\psi(2S) \rightarrow \gamma \chi_{cJ}, \chi_{cJ} \rightarrow \gamma J/\psi)$
- Possibility of testing the hadron-loop effect
- Coupled channel: the hadron-loop effect also may play a important role in the continuous spectra

First evidence of $\psi' \rightarrow \gamma\gamma J/\psi$ @BESIII

Higher-order Multipole in $\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow \pi^+ \pi^-, K^+ K^-$

- ψ'→γχ_{c2} is dominated by electric dipole (E1) transition, but expect some magnetic quadrupole component (M2).
- M2 amplitude provides sensitivity to charm quark anomalous magnetic moment κ : M2 = 0.029(1 + κ)
- Use large clean samples of $\chi_{c2} \rightarrow \pi^+\pi^-$ and $\chi_{c2} \rightarrow K^+K^-$; χ_{c0} samples used as control since M2 = 0.

Higher-order Multipole in $\psi' \rightarrow \gamma \chi_{c2}, \chi_{c2} \rightarrow \pi^+ \pi^-, K^+ K^-$

Recent results on Charmonium Decays

• Search for $\eta_c(2S) \rightarrow VV$

• χ_{cJ} decays

$\psi' \rightarrow \gamma P(\pi^0, \eta, \eta')$, arise surprises

 $\psi' \rightarrow \gamma$ P are important tests for various mechanisms: Vector meson Dominance Model (VDM); Couplings & form factor; Mixing of η-η'(-η_c); FSR by light quarks; 12% rule and "ρ π puzzle".

$$R_{\psi} = (1.10 \pm 0.38 \pm 0.07)\% << R_{J/\psi}$$

PRL105, 261801, (2010)

Search for $\eta_c(2S) \rightarrow VV$

- No signals observed in $\eta_c(2S) \rightarrow \rho\rho$, K^{*0}K^{*0}, $\phi\phi$;
- more stringent UL's are set.

χ_{cJ} study at BESIII

The χ_{cJ} decays provide good place to:

- Study gluonium: χ_c → gg → (qq)(qq)
 C. Amsler and F. E. Close, Phys. Rev. D 53, 295 (1996).
- Test the Color Octet Mechanism(COM)
 G. T. Bodwin *et al.*, Phys Rev. Lett. D51, 1125 (1995).
 H.-W. Huang and K.-T. Chao, Phys. Rev. D54, 6850 (1996).
 J. Bolz *et al.*, Eur. Phys. J. C 2, 705 (1998).
- First measurement of $\chi_{cJ} \rightarrow \omega \phi$, $\omega \omega$, $\phi \phi$
- First measurement of $\chi_{cJ} \rightarrow \gamma \phi$

- $\chi_{cJ} \rightarrow \phi \phi$ and $\chi_{cJ} \rightarrow \omega \omega$ are Singly OZI suppressed
- $\chi_{c1} \rightarrow \phi \phi$ and $\chi_{c1} \rightarrow \omega \omega$ is suppressed by helicity selection rule.
- $\chi_{cJ} \rightarrow \phi \omega$ is doubly OZI suppressed, not measured yet

χ_{cJ}→γ V (V:ρ,ω,φ)

Branching fractions for χ_{cJ} radiative decays to a vector meson (In units of 10^{-6})

Mode	CLEO ¹	pQCD ²	QCD ³	QCD+QED ³	BESIII
$\chi_{c0} \to \gamma \rho^0$	< 9.6	1.2	3.2	2.0	<10.5
$\chi_{c1} \to \gamma \rho^0$	24 <u>3 ± 19 ±</u> 22	14	41	42	228±13±22
$\chi_{c2} \to \gamma \rho^0$	< 50	4.4	13	38	<20.8
$\chi_{c0} \to \gamma \omega$	< 8.8	0.13	0.35	0.22	<12.9
$\chi_{c1} ightarrow \gamma \omega$	83 \pm 15 \pm 12	1.6	4.6	4.7	69.7±7.2±6.6
$\chi_{\rm C2} ightarrow \gamma \omega$	< 7.0	0.5	1.5	4.2	<6.1
$\chi_{c0} \to \gamma \phi$	< 6.4	0.46	1.3	0.03	<16.2
$\chi_{\rm C1} \to \gamma \phi$	< 26	3.6	11	11	25.8±5.2±2.3
$\chi_{\rm C2} ightarrow \gamma \phi$	< 13	1.1	3.3	6.5	<8.1
			F	irst observ	ation

prediction by pQCD much lower than experiment

Polarization of $\chi_{cJ} \rightarrow \gamma V (V:\rho,\omega,\phi)$

Longitudinal polarization (f_L) ; Transverse polarization (f_T) ; Helicity angle (θ)

Longitudinal polarization dominates, consistent with theoretical prediction

PRD83, 112005, (2011)

Recent results on D analysis

- Leptonic Decays
- Semi-leptonic Decays
- Search for D0->γγ

Preliminary results of D⁺ $\rightarrow \mu^+\nu$ @BESIII

Comparison of $B(D^+ \rightarrow \mu^+ \nu) \& f_D$

- The most precise measurement is provided by BESIII
- the error is still dominated by statistics, needing more data taken at 3773 GeV to reduce it.

Semi-leptonic Decays @BESIII

- Systematics are preliminary
- Will improve using full (3X) data set in the near future
- Form factor measurement is ongoing

Search for DO->yy

- Forbidden FCNC transition (c ->u+γ);
- SM prediction: Br(D0-> $\gamma\gamma$)~10⁻⁸ or less;
- Results presented in $Br(D_0 >\gamma\gamma)/Br(D_0 >\pi^0\pi^0) < 5.8 \times 10^{-3} @$ 90% CL, $Br(D_0 - >\gamma\gamma) < 4.6 \times 10^{-6} @$ 90% CL(preliminary);
- PDG 2.7 x 10⁻⁵, CLEO-c preli. 8.63 x 10⁻⁶, BaBar 2.2 x 10⁻⁶

Summary

- BESIII has been successfully operated since 2008:
 - World largest data sample of J/ψ, ψ', ψ(3770), ψ(4040) already collected, more data in future ($D_s^{*+}D_s^{-}$ at 4170MeV coming soon).

• A lot of results have been obtained:

➤Light quark states:

□confirmation the enhancement at pp threshold in J/ψ->γpp, Jpc =0-+.

□confirmation X(1835) with two new structures in $J/\psi - \gamma \pi \pi \eta'$.

□First observation: $\eta(1405) \rightarrow f_0(980)\pi^0$ (isospin breaking).

 $\Box \omega \varphi$ threshold enhancement in J/ ψ -> $\gamma \omega \varphi$

Πηη system in J/ψ->γηη

Charmonium transitions and decays:

 \square Precision measurements of h_C and $\eta_C(1S)$ properties.

□first observation of $\eta_c(2S)$ in ψ' ->γηc(2S) decay.

□ First evidence of ψ ' ->γγJ/ψ.

 $\label{eq:constraint} \square \ \chi_{cJ} {\sim} {\sim} \omega \varphi \ , \ \omega \omega, \ \varphi \varphi, \ \gamma \varphi.$

Charm decays:

D D⁺ -> μ⁺ν, D⁰ -> K/π e ν, D⁰ ->γγ.

• Expect many more results from BESIII in the future

Thank you

The η_c lineshape is not distorted in the $h_c \rightarrow \gamma \eta_c$, non-resonant bkg is small. This channel will be best suited to determine the η_c resonance parameters.

Tag Mode Reconstruction

- Four tag modes picked
- Best tag mode based minimum ΔE

$$\Delta E \equiv E - E_{beam}$$

BESIII Preliminary

Mode	Data Yield	Fraction of All Tags (%)	Tag Efficiency(%)
$D^0 \to K^- \pi^+$	$159,929 \pm 413$	20.7	$62.08 {\pm} 0.07$
$D^0 \to K^- \pi^+ \pi^0$	$323,\!348 \pm 667$	41.8	$33.56 {\pm} 0.03$
$D^0\to K^-\pi^+\pi^0\pi^0$	$78{,}467\pm480$	10.1	$14.93 {\pm} 0.04$
$D^0 \to K^- \pi^+ \pi^- \pi^+$	$211,\!910\pm 550$	27.4	$36.80 {\pm} 0.04$

Is the X(1835) from the same source of X(pp)?

- The mass of X(pp̄) is consistent with X(1835)
- The width of X(pp̄) is much narrower.
 Possible reasons:
 - $X(p\bar{p})$ and X(1835) come from different sources
 - Interference effect in J/ ψ -> $\gamma \pi \pi \eta$ ' process should not be ignored in the determination of the X(1835) mass and width
 - There may be more than one resonance in the mass peak around 1.83GeV in J/ψ ->γππη' decays.