

Radiative Transitions above 4 GeV at BESIII

Qing Gao (IHEP, Beijing)
(For the BESIII Collaboration)

Hadron 2015, Sep. 17th, 2015

Radiative transitions and Y(4260)

- Many unconventional charmonium-like (so-called XYZ) states were discovered, e.g. X(3872), Y(4260), Y(4360)..., while the nature of the states remains unclear.
- Y(4260) was observed in ISR process $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-J/\psi$ by BaBar, which has $J^{PC}=1^{--}$ and can be directly produced in e^+e^- collisions;
- The Y(4260) is heavier than DD threshold, but mostly decays to $\pi^+\pi^-J/\psi$;

- There's no place for Y(4260) in the conventional charmonium family;
- The newly observed Z_c particles seem to couple with Y(4260).

Radiative transitions and Y(4260)

• To better understand the nature of Y(4260), it's important to investigate the radiative transitions between the Y(4260) and the lower mass charmonium(-like) states (e.g. X(3872), χ_{cJ}).

- Search for new C-even charmonium(-like) states (e.g. Y(4140), Y(3915)) via radiative transitions.
- The e^+e^- collider BEPCII can reach 4.6 GeV for now, so we can produce Y(4260) directly.

Radiative transitions

- 1. Observation of $e^+e^- \to \gamma X(3872)$ (RPL 112,092001)
- 2. Search for $e^+e^- \rightarrow \gamma Y(4140)$ (PRD 91,032002)
- 3. Search for $e^+e^- \to \gamma \chi_{cI}$ (CPC, 39(4) (2015) 041001)

The results in the talk are based on **4** energy points

0.5 fb ⁻¹	$\psi(4040)$ at 4.009 GeV
1.9 fb ⁻¹	Y(4260) at 4.23 and 4.26 GeV
0.5 fb ⁻¹	<i>Y</i> (4360) at 4.36 GeV

The feature of X(3872)

- **Discovered** by Belle in $B^{\pm} \to K^{\pm}\pi^{+}\pi^{-}J/\psi$ in 2003, and confirmed by many other experiments;
- very narrow (<1.2 MeV);</p>
- ❖ BaBar and Belle observed $X(3872) \rightarrow \gamma J/\psi$, ensuring X(3872) **C-even** state;
- ightharpoonup Spin parity $J^P = \mathbf{1}^+$ (CDF and LHCb);
- **Very close** to $D\overline{D}^*$ threshold, a good candidate for a hadronic molecule or a tetraquark state;
- Only observed in B meson decays and hadron collisions; radiative transition at BESIII?

Observation of $e^+e^- \rightarrow \gamma X(3872)$ via $X(3872) \rightarrow \pi^+\pi^- J/\psi$

- **Observe** $e^+e^- \rightarrow \gamma X(3872)$ for the first time with a significance 6.3σ .
- Measured mass is $M(X(3872)) = (3871.9 \pm 0.7 \pm 0.2) \text{ MeV}/c^2$, agrees with previous measurements well.
- Measured $\sigma^B[e^+e^- \to \gamma X(3872)] \times$ $\mathcal{B}[X(3872) \to \pi^+\pi^-J/\psi]$ at 4.009, 4.23, 4.26, 4.36 GeV.
- These results suggest that X(3872) may come from Y(4260) decay. Assuming $\mathcal{B}[X(3872) \to \pi^+\pi^-J/\psi]=5\%$,

$$\frac{\boldsymbol{\mathcal{B}}(Y(4260) \rightarrow \gamma X(3872))}{\boldsymbol{\mathcal{B}}(Y(4260) \rightarrow \pi^+\pi^-J/\psi)} \approx 0.1$$

Search for Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$

Exist

CDF first reported evidence for Y(4140) in $B^+ \rightarrow \phi J/\psi K^+$; CDFII claimed observation (>5 σ)

CMS and D0 studied $B^+ \rightarrow \phi J/\psi K^+$; with resonance parameters consistent with CDF

or not?

Belle did not confirm Y(4140) in the $B^+ \to \phi J/\psi K^+$ and $\gamma \gamma \to \phi J/\psi$

LHCb did not find Y(4140) in $B^+ \rightarrow \phi J/\psi K^+$

BABAR found no evidence for Y(4140) by study $B^+ \rightarrow \phi J/\psi K^+$

Search for Y(4140) via $e^+e^- \rightarrow \gamma \phi J/\psi$

- The mass and width of Y(4140) given by CDFII are 4143.4 \pm 3.1 MeV/ c^2 and 15.3 \pm 10.7 MeV;
- Y(4140) is not a conventional charmonium state, but a good candidate for $D_s^*\overline{D_s^*}$ molecular state;
- Both ϕ and J/ψ have $J^{PC}=\mathbf{1}^{--}$, the Y(4140) has positive C-parity and can be searched for through radiative transition of Y(4260).
- $\triangleright e^+e^- \rightarrow \gamma \phi J/\psi, J/\psi \rightarrow e^+e^-/\mu^+\mu^-$
 - 1. $\phi \rightarrow K^+K^-$ (one Kaon is missing),
 - 2. $\phi \rightarrow K_S K_L$ (K_L is missing),
 - 3. $\phi \to \pi^+ \pi^- \pi^0$

Combine 6 modes (3 ϕ modes \times 2 J/ψ modes)

Three events seem like Y(4140). No background from MC studies.

No significant Y(4140) signal found

◆ Upper limit at the 90% C.L. for

$$\sigma^B \times \mathcal{B} = \sigma^B(e^+e^- \to \gamma Y(4140)) \times \mathcal{B}(Y(4140) \to \phi J/\psi)$$

\sqrt{s} (GeV/ c^2)	Luminosity (pb ⁻¹)	$(1+\delta)$	$\sigma^B imes \mathcal{B}$ (pb)
4.23	1094	0.840	<0.35
4.26	827	0.847	<0.28
4.36	545	0.944	<0.33

Systematic uncertainty included

- Compared with the X(3872) production (same magnitude) $\sigma^B(e^+e^- \to \gamma X(3872)) \times \mathcal{B}(X(3872) \to \pi^+\pi^- J/\psi)$ = 0.27±0.09(stat) ±0.02(syst) pb at \sqrt{s} = 4.23 GeV, = 0.33±0.12(stat) ±0.02(syst) pb at \sqrt{s} = 4.26 GeV.
- ♦ Take $\mathcal{B}(X(3872) \to \pi^+\pi^-J/\psi) = 5\%$. arXiv: 0910.3138 And $\mathcal{B}(Y(4140) \to \phi J/\psi) = 30\%$, molecular calculation. PRD 80, 054019. $\frac{\sigma(e^+e^-\to\gamma Y(4140)}{\sigma(e^+e^-\to\gamma X(3872))} \le 0.1 \text{ at } \sqrt{s} = 4.23 \text{ and } 4.26 \text{ GeV}.$

Search for $e^+e^- \to \gamma \chi_{cJ}$ at $\sqrt{s} > 4$ GeV

- The cross sections of $e^+e^- \rightarrow \gamma \chi_{cJ}$ have been evaluated theoretically with the framework of NRQCD;
- In experiment, CLEO investigated the process but failed to observe a signal;
- BESIII has collected large data sample for deeply investigate the processes, which may provide more information on the properties of Y(4260).
- The process is reconstructed by

$$e^{+}e^{-} \rightarrow \gamma \chi_{cJ}$$

$$\downarrow \qquad \gamma J/\psi$$

$$\downarrow \qquad \qquad \mu^{+}\mu^{-}$$

Search for $e^+e^- \rightarrow \gamma \chi_{cJ}$ at $\sqrt{s} > 4$ GeV

Unbinned likelihood fit to $M(\gamma J/\psi)$

Signal: a double-Gaussian determined from MC at 4.260 GeV;

Background: radiative dimuon MC shape;

Data: limited statistics

Search for $e^+e^- \to \gamma \chi_{cJ}$ at $\sqrt{s} > 4$ GeV

The results on $e^+e^- \rightarrow \gamma \chi_{cI}$ born cross section measurement

$\sqrt{s}/{\rm GeV}$		$N^{ m obs}$	significance (σ)	$N^{ m UP}$	$\sigma^{ m UP}/{ m pb}$	$\sigma^{ m B}/{ m pb}$
4.009	χ c0	7.0 ± 6.6	1.6	18	179	$65.0 \pm 61.3 \pm 4.2$
	χ_{c1}	4.4 ± 2.6	2.2	9	5.3	$2.4 \pm 1.4 \pm 0.2$
	χ_{c2}	1.8 ± 1.7	1.5	6	18	$4.7 {\pm} 4.4 {\pm} 0.6$
4.230	χ c0	0.2 ± 2.3	0.0	7	26	$0.7 \pm 8.0 \pm 0.1$
	χ_{c1}	6.7 ± 4.3	1.9	14	1.7	$0.7 \pm 0.5 \pm 0.1$
	χ_{c2}	13.3 ± 5.2	2.9	22	5.0	$2.7 \pm 1.1 \pm 0.3$
4.260	χ_{c0}	0.1 ± 1.9	0.0	5	25	$0.5\pm 8.8\pm 0.1$
	Xc1	3.0 ± 3.0	1.1	7	1.1	$0.4 \pm 0.4 \pm 0.1$
	χ_{c2}	7.5 ± 3.9	2.3	14	4.2	$2.0 \pm 1.1 \pm 0.2$
4.360	χc0	0.1 ± 0.7	0.0	3	23	$0.7 \pm 5.0 \pm 0.1$
	Xc1	5.2 ± 4.9	2.4	10	2.9	$1.4 \pm 1.3 \pm 0.1$
	χ_{c2}	4.4 ± 4.5	2.0	9	5.0	$2.3\pm2.3\pm0.2$

• Significance σ is small due to limited statistics;

• The upper limits on σ^B are compatible with the theoretical prediction;

• The first uncertainty of σ^B is statistical, and the second systematic.

hadron 2015

arXiv:1310.8597

14

Evidence for $e^+e^- \rightarrow \gamma \chi_{c1}/\chi_{c2}$

Fit to <u>the sum of</u> $M(\gamma J/\psi)$ distribution of the 4 energy points

The statistical significances for χ_{c0} , χ_{c1} , χ_{c2} are 1.2 σ , 3.0 σ , 3.4 σ respectively.

A simultaneous fit to $M(\gamma J/\psi)$ at 4 energy points with assuming the production $\sigma(e^+e^- \to \gamma \chi_{cJ})$ at different \sqrt{s} follows the lineshape of Y(4260)

The statistical significances for χ_{c0} , χ_{c1} , χ_{c2} are 0, 2.4σ , 4.0σ respectively.

Summary

- Transition $e^+e^- \to \gamma X(3872)$ at $\sqrt{s} > 4$ GeV is observed with significance 6.3 σ , perhaps via $Y(4260) \to \gamma X(3872)$.
- The Y(4140) is searched via $e^+e^- \to \gamma \phi J/\psi$, no evidence is found (three events).
- The evidence for $e^+e^- \rightarrow \gamma \chi_{c1}/\chi_{c2}$ at $\sqrt{s} > 4$ GeV is found.
- We are still analyzing the data; more interesting results are expected.

Thank you!