

Fragmentation Functions at BESIII

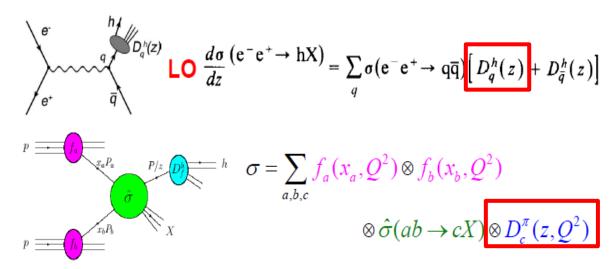
Yinghui Guan(管颖慧) a, Haibo Li a, Xiao-Rui Lyu b, Wenbiao Yan c, Isabella Garzia d

- a. Institute of High Energy Physics(IHEP)
- b. University of Chinese Academy of Sciences(UCAS)
- c. University of Science and Technology of China(USTC)
- d. Ferrara University, INFN

(for the BESIII Collaboration)

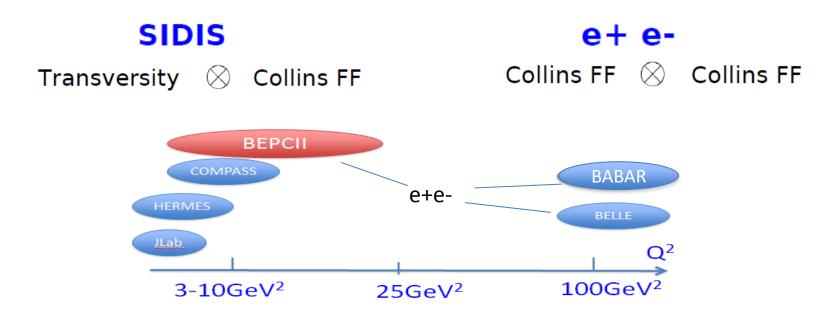
The Sixth Workshop on Hadron Physics in China and Opportunities in US Lanzhou, China 21–24th July 2014

Outline


- Introduction
 - Fragmentation Function(FF)
 - Motivation

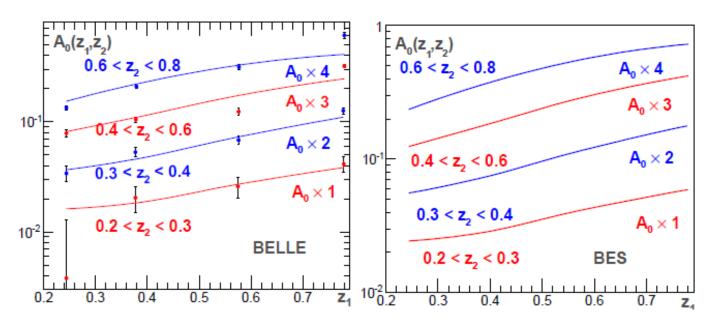
BEPCII and BESIII

- Physics topics about FF at BESIII:
 - Inclusive hadron($\pi/\pi^0/K/K_s$...) production
 - Double Collins Asymmetries(DCA) measurement
- Summary and Outlook

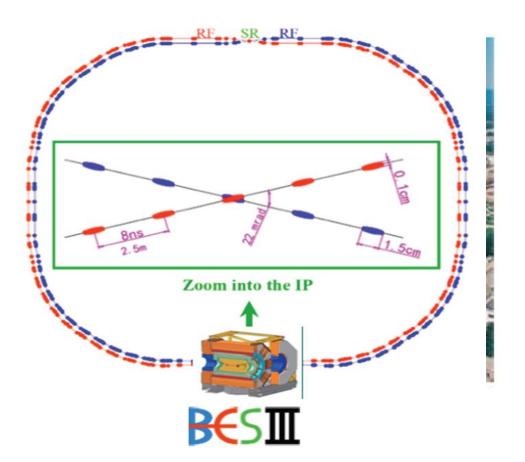

Fragmentation Function(FF)

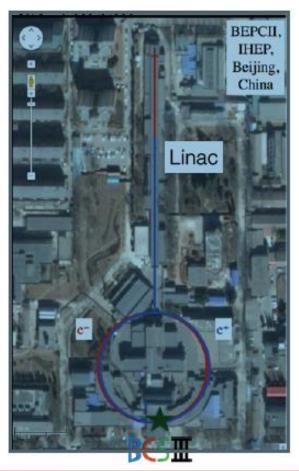
• Fragmentation Functions (FFs) describe the probability for a parton to fragment into a hadron carrying a certain fraction z of the parton momentum

- FF are nonperturbetive in nature, important information in our understanding of hadron production and parton distribution
- Fitting: parametrization & experimental data (e+e-, SIDIS, pp)
- Universality: process independent (SIDIS, pp, ee annihilation)
- Energy evolution: evolved from a defined energy scale


Motivation

- SIDIS experiments: HERMES, JLab, low Q², to extract PDFs, need FFs from e+e- annihilations.
- Existing information of FFs: BABAR, Belle etc., high Q², need energy evolution for SIDIS.
- BEPCII: similar energy coverage with SIDIS. Input for extracting the parton distribution without energy evolution! Proposed by PRD 88. 034016 (2013)
- Combined efforts to measurement Transversity distribution

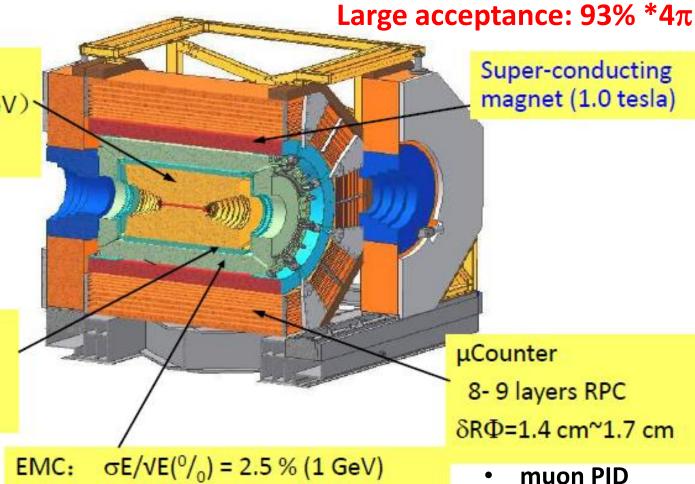

Motivation


PRD 88. 034016 (2013) P. Sun, F. Yuan

- The Collins asymmetries in di-pion azimuthal angular distributions in e+e- annihilation processes, Ec.m. =4.6GeV,
- Because of energy evolution effect, it will be larger than that at Belle by a factor 2
- The experimental results from BEPCII will provide an important test.

Beijing Electron Positron Collider-II (BEPCII)

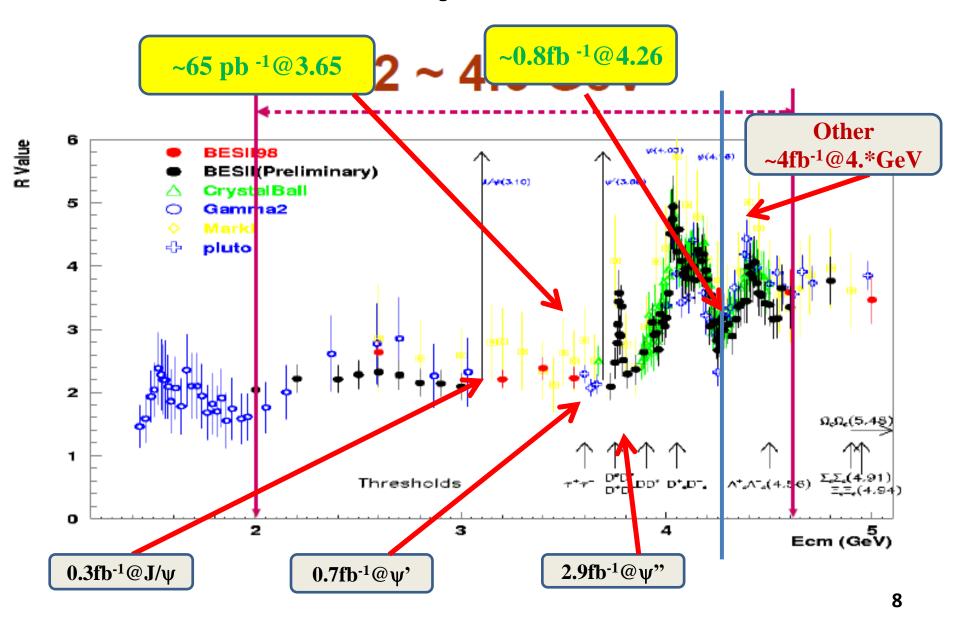
- e+e- annihilation, unpolarized beams, symmetric collider,
- Beam energy: 1.0-2.3GeV (Q: ~2.0-4.6GeV)
- Achieved luminosity: 0.7×10^{33} cm⁻²s⁻¹@3.770GeV


The BESIII Detector

Drift Chamber (MDC) $\sigma P/P (^{0}/_{_{0}}) = 0.5\%(1 \text{GeV})$ $\sigma_{\text{dE/dx}} (^{0}/_{_{0}}) = 6\%$

- Tracking
- PID

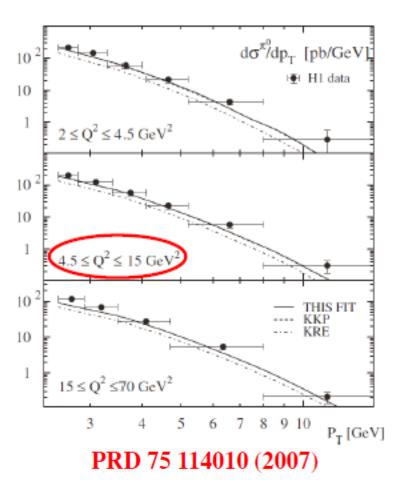
Time Of Flight (TOF) σ_T : 90 ps Barrel 110 ps endcap

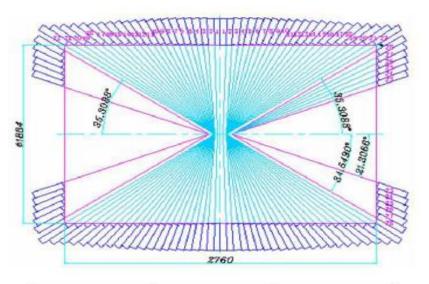

PID

EMC: $\sigma E/VE(^{0}/_{0}) = 2.5 \% (1 \text{ GeV})$ (CsI) $\sigma_{z,b}(\text{cm}) = 0.5 - 0.7 \text{ cm/VE}$

Neutral showers reconstruction

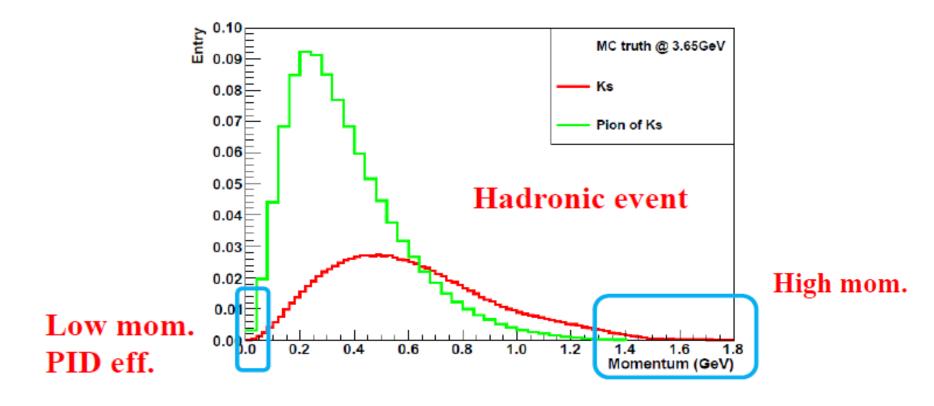
Data Samples We Have


Inclusive Hadron Production


$e+e- \rightarrow \pi/K + X$

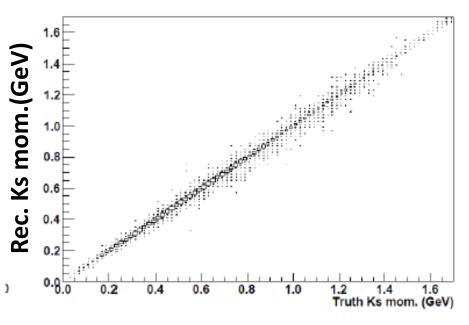
- Lack of low energy scale, high z $z=2E_{hadron}/\sqrt{s}$
 - BESIII can contribute
- PID problem at high z
 - High error rate of PID for the charged tracks with high momentum.

$$e^+e^- \rightarrow \pi^0 + X$$



Resolution	Energy	Position
Barrel	2.5%@1GeV	6mm@1GeV
Endcap	5.0%@1GeV	9mm@1GeV

- $\pi^0 \rightarrow 2\gamma$ with EMC
- $e^+e^- \rightarrow \pi^0 + X @BESIII$
- PID is not needed (crucial issue for charged π/K , especially at high z)
- At BESIII, good performance of EMC on measuring neutral showers

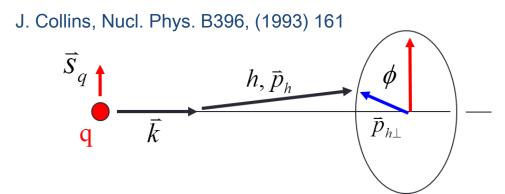

$$e^+e^- \rightarrow K_s + X \rightarrow \pi^+\pi^- + X$$
 (in progress)

- Ks + X: clean process, low backgrounds level
- Second vertex to suppress backgrounds

$$e^+e^- \rightarrow K_s + X \rightarrow \pi^+\pi^- + X$$
 (in progress)

	Ks candidate no. @[0.47-0.53]
(γ)e ⁺ e ⁻	1667/0.56%
$(\gamma)\mu^+\mu^-$	110/0.037%
(γ) γ γ	140/0.047%
$(\gamma) \tau^+ \tau^-$	4156/1.40%
e^+e^-+X	248/0.084%
Non-phys.	2453/0.83%

Truth Ks mom.(GeV)

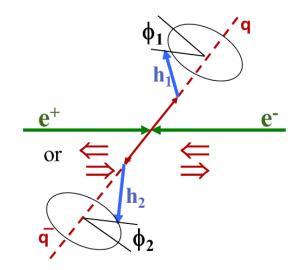

- Binning to get the cross section depending on the momentum of Ks
- The resolution of Ks momentum is good enough
- Preliminary data results are not shown
- Data set @3.65GeV

Probe Collins Effect

(in progress)

• We only focus on the di-pion currently.

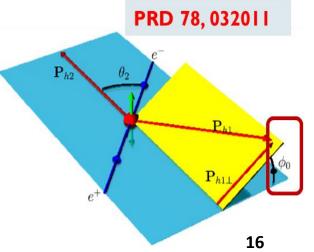
Collins Fragmentation Function

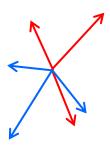

 It describes the relation between the transverse spin of the fragmenting quark and the azimuthal distribution of the final state hadrons around the quark momentum

$$\begin{split} D_{hq^{\uparrow}}(z,P_{h\perp}) &= D_1^q(z,P_{h\perp}^2) \\ &+ \overbrace{H_1^{\perp q}(z,P_{h\perp}^2)}^{\left(\hat{\mathbf{k}}\times\mathbf{P}_{h\perp}\right)\cdot\mathbf{S}_q}_{ZM_h}, \end{split}$$

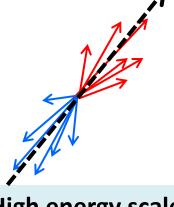
- H: Collins Fragmentation Function
- z: fractional energy of hadron $z = 2E_h/\sqrt{s}$,
- $P_{h\perp}$:transverse momentum of the hadron

Probe Collins Effect in e⁺e⁻ Annihilation

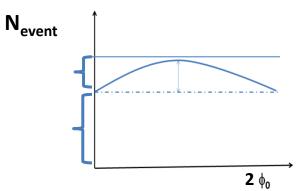

- In e⁺e⁻ annihilation, γ^* (spin-1) \rightarrow spin-1/2 q and \overline{q}
 - In a given event, the spin directions are unknown, but they must be parallel
 - Exploit this correlation by using hadrons in opposite jets


• The correlation of quark and anti-quark Collins functions give a product of $cos(2\phi_0)$ modulation

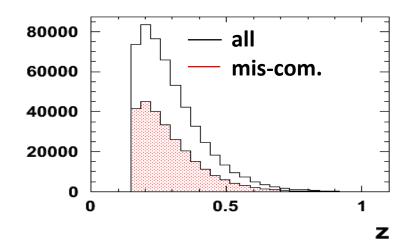

$$e^+e^- \rightarrow qq \rightarrow h_1h_2X \quad (q=u, d, s) ==> \\ \sigma \propto \cos(2\phi_0)H_1^{\perp}(z_1) \otimes H_1^{\perp}(z_2),$$

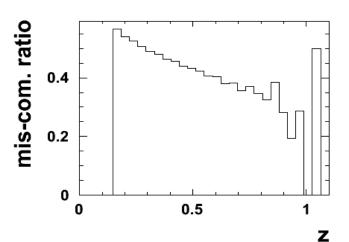

$$\frac{d\sigma(e^{+}e^{-} \rightarrow h_{1}h_{2}X)}{d\Omega dz_{1}dz_{2}d^{2}\mathbf{q}_{T}} = \frac{3\alpha^{2}}{Q^{2}}z_{1}^{2}z_{2}^{2}\left\{A(y)\mathcal{F}[D_{1}\bar{D}_{2}] + B(y)\right\} \times \left[\cos(2\phi_{0})\mathcal{F}\left[(2\hat{\mathbf{h}}\cdot\mathbf{k}_{T}\hat{\mathbf{h}}\cdot\mathbf{p}_{T} - \mathbf{k}_{T}\cdot\mathbf{p}_{T})\frac{H_{1}^{\perp}\bar{H}_{2}^{\perp}}{M_{1}M_{2}}\right]\right\},$$

Event Shape


 $T \stackrel{\text{max}}{=} \frac{\sum_{h} |\mathbf{P}_{\mathbf{h}}^{\text{CMS}} \cdot \hat{\mathbf{n}}|}{\sum_{h} |P_{h}^{\text{CMS}}|}$

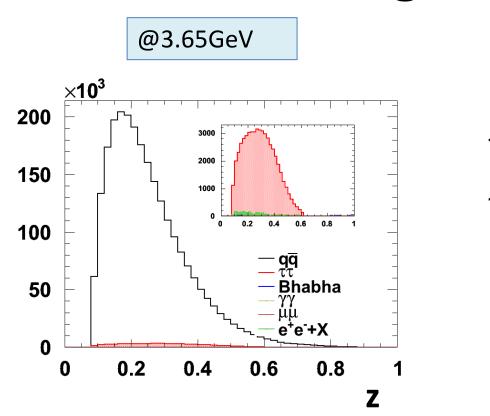
- ✓ At Belle/BABAR, with two-jets events
 - **✓** High Thrust value is useful to suppress backgrounds.
 - **✓** Thrust axis is used to separate the hadrons from opposite jets (h1 and h2)
- ✓ At BESIII, different situation
 - \triangleright Low energy, low multiplicity, $q q^-$ event shape is not jetty!
 - Mis-combination problem: $h_1h'_1$ or $h_2h'_2$ combination from same quark which are not of interest. Dilute the measured asymmetries.
 - \triangleright Require large Open Angle(OA) of π -pair to suppress mis-combination; Choosing the leading hadrons
 - ➤ Mis.com. could be suppressed, but still be a problem

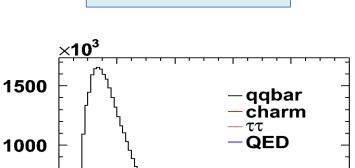

Estimation of Mis-combination Rate


The rate of the mis-combination(R_{mis.}) need to be known

$$A_{ture} = (1 + R_{mis.})A_{mea.}$$

- > This estimation relies on MC
 - We trace the final hadrons back to the initial parton in Pythia to find π -pair that come from the same quark .
 - Need more check and will be used to correct asymmetries measured in data

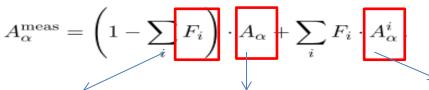

Backgrounds


500

0

0

0.2



0.4

0.6

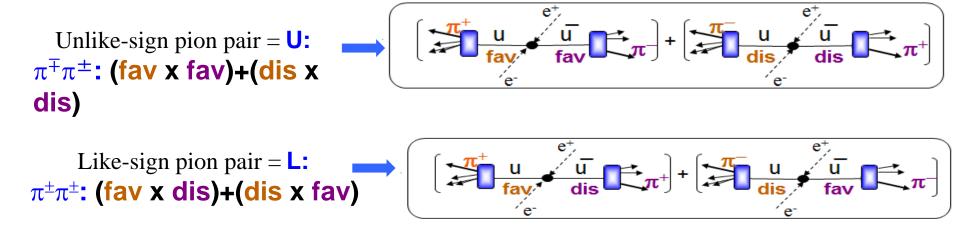
@4.26GeV

✓ Need to check asymmetries contributed by background.

Fraction of background

The true asymmetries

Asymmetries from background

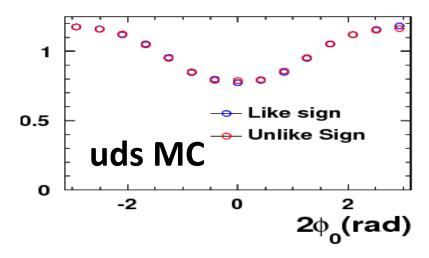

0.8

1

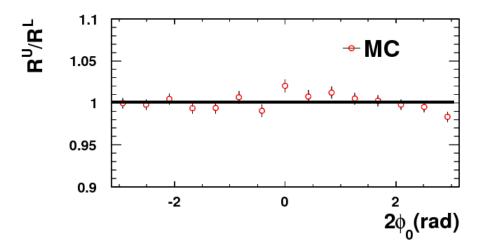
Z

Double Ratio

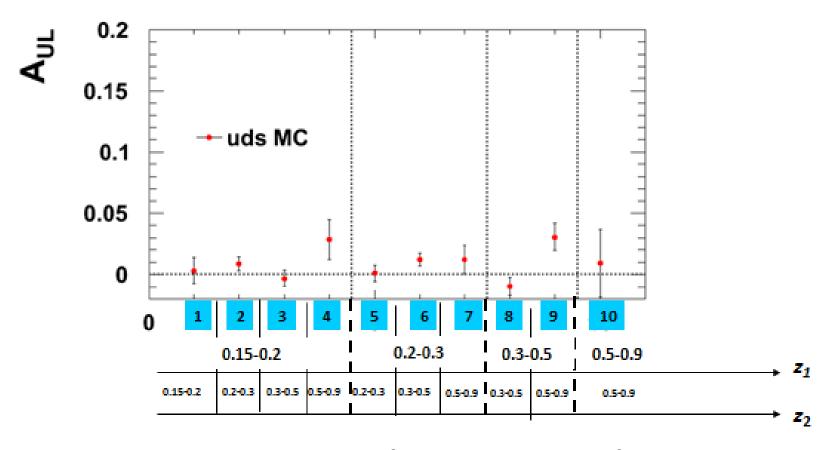
- Favored fragmentation process describes the fragmentation of a quark of flavor q into a hadron with a valence quark of the same flavor: i.e.: $u\rightarrow\pi+$, $d\rightarrow\pi-$
- **Disfavored** for $d \rightarrow \pi^+$, $u \rightarrow \pi^-$


- Normalized Ratio R
- $R_0(2\phi_0) = \frac{N(2\phi_0)}{\langle N_0 \rangle}.$

- $\frac{G}{G}/R_0^L = 1 + \cos(2\phi_0) \frac{\sin^2\theta}{1 + \cos^2\theta}$
- Double Ratio(DR) (R^u/R^L)to cancel detector effects and QCD radiative effects which are charged independent


 $\times \left\{ \frac{f(H_{1}^{\perp,\text{tav}}\bar{H}_{1}^{\perp,\text{fav}} + H_{1}^{\perp,\text{dis}}\bar{H}_{1}^{\perp,\text{dis}})}{(D_{1}^{\text{fav}}\bar{D}_{1}^{\text{fav}} + D_{1}^{\text{dis}}\bar{D}_{1}^{\text{dis}})} - \frac{f(H_{1}^{\perp,\text{fav}}\bar{H}_{1}^{\perp,\text{dis}})}{(D_{1}^{\text{fav}}\bar{D}_{1}^{\text{dis}})} \right\};$

$2\phi_0$ Distributions (MC)


Normalized Raw distribution:

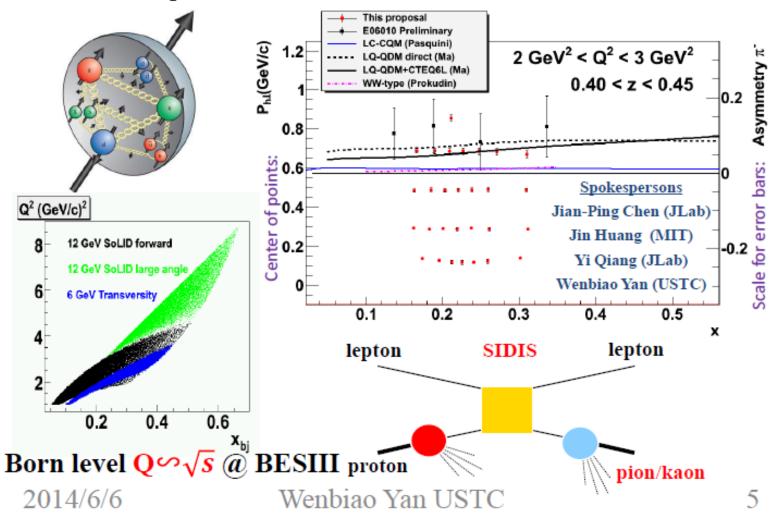
Double Ratio:

MC Validation

- Statistic uncertainties only. Consistent with zero as expected.
- In the last z bin, assume 15% asy. ,sensitivity > 3 sigma

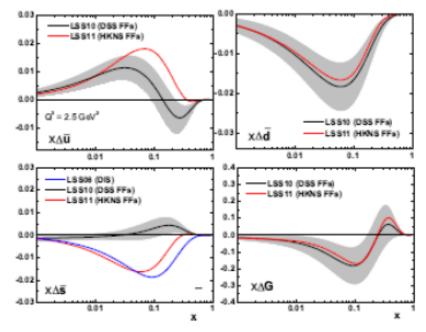
Summary and Outlook

- BESIII data can provide:
 - Data at low energy scale
 - Test energy evolution effect of FF
 - Combined effort to measurement Transversity distribution
- What we are working on:
 - Ks + X cross section
 - Double Collins asymmetries in inclusive charged π production
- Outlook
 - Spin 2014 Conference
 - ~ 0.36fb⁻¹ off-resonance data, 2015/2016



BACKUP

TMD-PFFs


$D_1(z) = \left(\bullet \rightarrow \bigcirc \right)$	$D_{1}(z,\mathbf{k}_{T}^{2}) = \begin{pmatrix} \bullet & \longrightarrow & \bigcirc \end{pmatrix}$ $D^{\perp}_{1T}(z,\mathbf{k}_{T}^{2}) = \begin{pmatrix} \bullet & \longrightarrow & \bigcirc \end{pmatrix}$
$G_1(z) = \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} - \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$	$G_{1L}(z, \mathbf{k}_{T}^{2}) = \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} - \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$ $G_{1T}(z, \mathbf{k}_{T}^{2}) = \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix} - \begin{bmatrix} \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{bmatrix}$
$H_1(z) = \left(\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right) - \left(\stackrel{\bullet}{\bullet} \rightarrow \stackrel{\bullet}{\bullet} \right)$	$H_{1T}(z,\mathbf{k}_{T}^{2}) = \begin{pmatrix} \updownarrow & & & \\ & & & \\ & & & \\ & & & \end{pmatrix} - \begin{pmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$

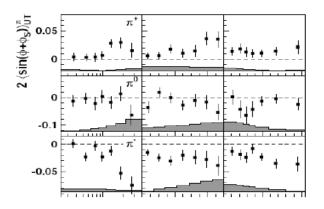
Spin structure of neculon

Strange quark polarization puzzle

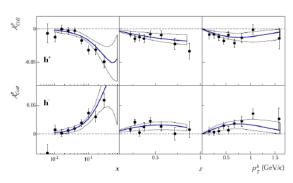
- sum of polarization strange parton PDFs: $\Delta s(x) + \Delta s(x)$
 - ➤ polarized inclusive DIS: negative for all values of x
 - Semi-inclusive DIS: positive for most of measured x
 - ➤PRD 84 014002 (2011) : HKNS FF, negative for SIDIS

PRD 84 014002 (2011)

- •Inclusive DIS: $e+N\rightarrow e^2+X$
 - >parton density function PDF
- Semi-inclusive DIS: e+N→e'+h+X
 ▶PDF and FF

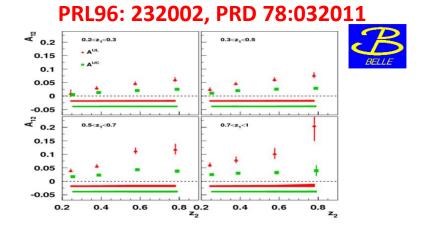

Inclusive kaon production

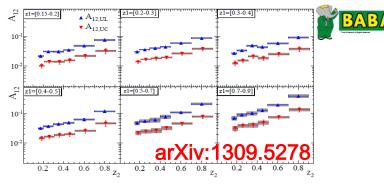
Motivation

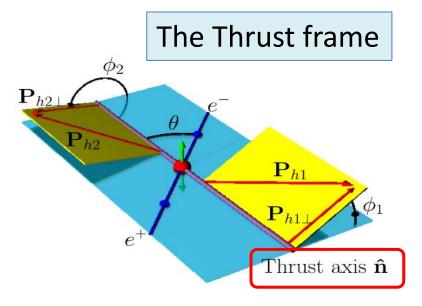


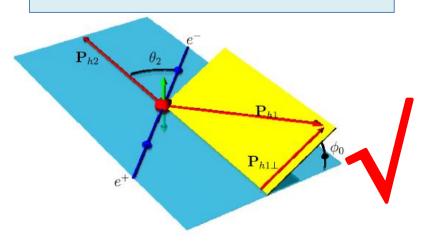
Transversity Collins FF PRL 94: 012002, PLB693,11-16

SIDIS




COMPASS, PLB 2012

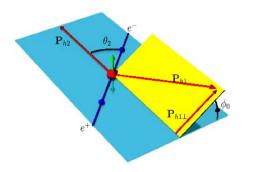

Collins FF Collins FF

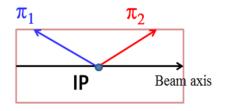


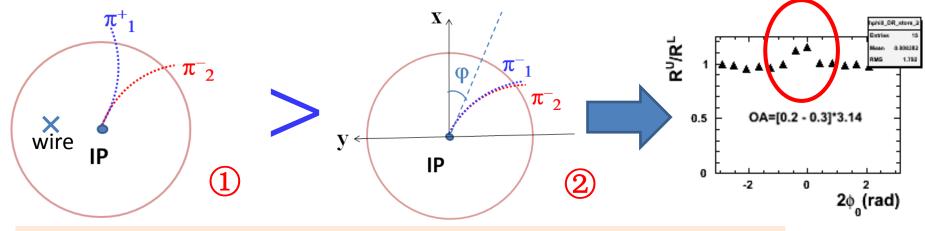
• FF from e+e- as input for extracting the parton distribution

Double Collins Asymmetries (DCA)

The second hadron frame

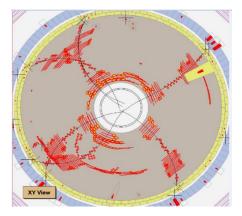

$$\frac{d\sigma(e^+e^- \to h_1 h_2 X)}{d\Omega dz_1 dz_2 d\phi_1 d\phi_2} = \sum_{q,\bar{q}} \frac{3\alpha^2}{Q^2} \frac{e_q^2}{4} z_1^2 z_2^2 \{ (1 + \cos^2\theta) D_1^{q,[0]}(z_1) \bar{D}_1^{q,[0]}(z_2) + \sin^2\theta \cos(\phi_1 + \phi_2) H_1^{\perp,[1],q}(z_1) \bar{H}_1^{\perp,[1],q}(z_2) \},$$


$$\frac{d\sigma(e^+e^- \to h_1h_2X)}{d\Omega dz_1 dz_2 d^2 \mathbf{q}_T} = \frac{3\alpha^2}{Q^2} z_1^2 z_2^2 \left\{ A(y) \mathcal{F}[D_1\bar{D}_2] + B(y) \times \cos(2\phi_0) \mathcal{F}\left[(2\hat{\mathbf{h}} \cdot \mathbf{k}_T \hat{\mathbf{h}} \cdot \mathbf{p}_T - \mathbf{k}_T \cdot \mathbf{p}_T) \frac{H_1^\perp \bar{H}_2^\perp}{M_1 M_2} \right] \right\},$$


- The correlation of quark and anti-quark Collins Functions
- By looking the two hadrons in opposite jets
- Only the second method could be performed at BESIII

Detector Effects(1)

- From MC, we confirmed two kinds of detector effects which can not be cancelled out in Double Ratio:
 - Case 1. when the azimuthal angle in the detector (φ) of two π are very close, opposite-charged $\pi^+\pi^-$ have higher efficiencies than same-charged $\pi^-\pi^-$ (or $\pi^+\pi^+$)

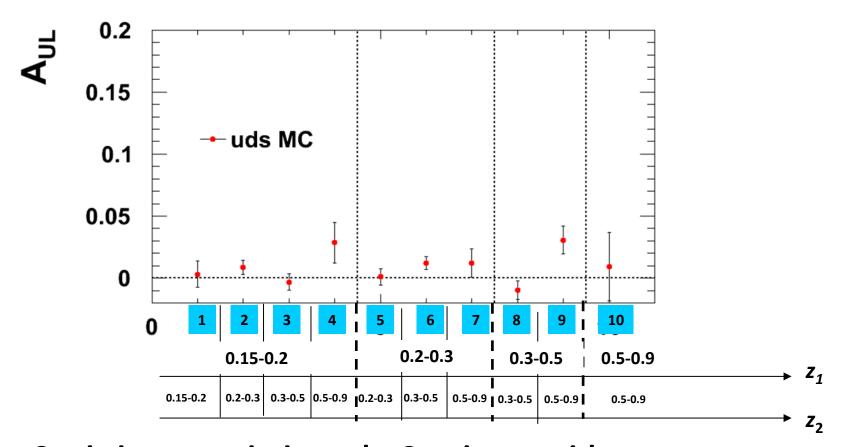


Detector Effects(2)

- Case 2. Ghost tracks produce extra same-charged π pairs $(\pi^-\pi^- \text{ or } \pi^+\pi^+)$
- These two detectors effects:
 - contaminate the $2\phi_0$ distribution, especially in small open angle
 - require large open angle of the two π
 - these effects can be suppressed,
 but still there, assumed as
 systematic errors

Ghost tracks

Event Selection


- Charged tracks :
 - $> |V_r| < 1.0 \text{ cm}, |V_z| < 10.0 \text{ cm}$
 - $\geq |\cos\theta| < 0.93$
 - ≥nGood>=3

- Further requirements:
 - ➤ N_{electron} ==0 to suppress Bhabha
 - ➤ The total visible energy

 E_{vis} >1.5GeV to suppress $\tau\tau$

- ightharpoonup PID of π
 - de/dx, TOF1, TOF2
 - \rightarrow Prob(π)>0&&Prob(π)>Prob(K)
- \wedge N $\pi >= 2$
- open angle of the π -pair: OA>120°

MC Validation

- Statistic uncertainties only. Consistent with zero as expected.
- Assume 15% asy. in the last z bin, sensitivity > 3 sigma.