Highlights on XYZ (charmonium-like) states and recent results on light hadron spectroscopy from **BES**II

Hao Cai

Wuhan University, P. R. China

2014 Flavour Physics Conference, Quy Nhon, Vietnam

July 29th, 2014

Outline

Introduction

- ► BEPCII
- ► BESIII
- Data set
- XYZ Physics
- Light hadron spectroscopy
- Summary

BEPCII

Beam energy range	1~2.3 GeV
Optimized beam energy region	1.89 GeV
Current of each beam in collision	0.93 A
Luminosity achieved	$0.7 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$
Beam lifetime	2.7 hrs
SR mode	0.25 A@2.5 GeV

Main Drift Chamber (MDC): $\sigma_{xy} = 135 \ \mu m$ $\Delta P/P = 0.5\% \ @ 1 \ GeV$ $\sigma_{dE/dx} = 6 \sim 7\%$

TOF System: $\sigma_T = 80 \text{ ps @barrel}$ 110 ps @endcap

EM Calorimeter (EMC): $\Delta E / E = 2.5\% @ 1 \ GeV$ $\sigma_{Z,\phi} = 0.6 \ cm @ 1 \ GeV$ Barrel and endcap have different performance

BESIII Collaboration

BESIII started data taking for physics since 2009

1.3×10^{9}	J/Ψ @ 3.097 GeV	$2009 (0.225 \times 10^9) + 2012$
0.5×10^{9}	Ψ′ @ 3.686 GeV	$2009 (0.106 \times 10^9) + 2012$
2.9 fb^{-1}	Ψ(3770) @ 3.773 GeV	2010 + 2011
0.5 fb^{-1}	Ψ(4040) @ 4.009 GeV	2011
0.024 fb^{-1}	au mass scan at around 3.554 GeV	2011
1.9 fb^{-1}	Y(4260) @ 4.23 and 4.26 GeV	2013
0.5 fb^{-1}	Y(4360) @ 4.36 GeV	2013
0.5 fb^{-1}	Y(4260) and Y(4360) scan	2013
0.8 fb ⁻¹	R scan, 104 energy points between 3.85 and 4.59 GeV	2014
1.0 fb^{-1}	@ 4.42 GeV	2014
0.1 fb^{-1}	@ 4.47 GeV	2014
0.1 fb ⁻¹	@ 4.53 GeV	2014
0.04 fb^{-1}	@ 4.575 GeV	2014
0.5 fb ⁻¹	@ 4.60 GeV	2014

XYZ (charmonium-like) physics at **BES**II

The Landscape

- All states below
 DD threshold have
 been observed
- Many missing states above DD threshold
- Pattern of masses
- Transitions between states

Y(4260)

- ► $J^{PC} = 1^{--}$ state produced in $e^+e^- \rightarrow \gamma_{ISR} \pi^+ \pi^- J/\Psi$
- OZI favored decay is expected, but no obvious enhanced open-charm channel is observed

Final state (X	.)	$\sigma(1)$	$\sigma(Y(4260) \rightarrow X)$ Y(4260) $\rightarrow \pi^+ \pi^- J/\psi$
$Dar{D}$ $D^*ar{D}$ $D^*ar{D}^*$	CLEO-c		<4.0 <45 <11
$D^*ar{D}\pi \ D^*ar{D}^*\pi$	PRD 80, 072001 (2009)		<15 <8.2
$D_{s}^{+}D_{s}^{-}$ $D_{s}^{*+}D_{s}^{-}$ $D_{s}^{*+}D_{s}^{*-}$			<1.3 <0.8 <9.5

Y(4360)

- Similar to Y(4260), 1⁻⁻ state produced in $e^+e^- \rightarrow \gamma_{ISR}\pi^+\pi^-\Psi'$
- Additional state at 4660 MeV
- Nature of Y states is unknown
- The interference effect among them is large
- Dedicated running at BESIII starting in 2013 winter

$e^+e^- \rightarrow \pi^+\pi^- J/\Psi$ at $E_{cm} = 4260 \text{ MeV}$

> $\pi\pi J/\Psi$ is the only firmly established decay mode of Y(4260)

$e^+e^- \rightarrow \pi^+\pi^- J/\Psi$ at $E_{cm} = 4260 \text{ MeV}$

► Lum = 525 pb⁻¹

Born cross section
 is (62.9±1.9±3.7)
 pb

 Analysis is valid and unbiased

Discovery of $Z_C^{\pm}(3900)$

- $\blacktriangleright \quad Z_c^{\pm}(3900) \to \pi^{\pm} J/\Psi$
- First confirmed particle made of four quarks
- More data is needed

Viewpoint: New Particle Hints at Four-Quark Matter http://physics.aps.org/articles/v6/69

- Evidence of neutral iso-spin partner is observed in $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$
- Production correlated with Y(4260) is suggestive

$e^+e^- \rightarrow \pi^{\pm}(D\overline{D}^*)^{\mp}@4260 \text{ MeV}$

Events

- \triangleright Z_c(3885) is observed in the $D\overline{D}^*$ invariant mass
- If $Z_c(3885)$ is $Z_c(3900)$ $\Gamma(\mathbb{Z}_{c}(3900) \rightarrow D\overline{D}^{*})$ $\frac{1}{\Gamma(Z_c(3900) \rightarrow \pi J/\Psi)} = 6.2 \pm 2.9$ much smaller than that of conventional charmonium states
- π angular distribution favors $J^{P} = 1^{+}$

 $M[Z_c(3900)] = (3899.0 \pm 3.6 \pm 4.9) MeV$ $\Gamma[Z_c(3900)] = (46 \pm 10 \pm 20)$ MeV

 $M[Z_c(3885)] = 3884 \pm 4 \text{ MeV}$ $\Gamma[Z_c(3885)] = 25 \pm 11 \text{ MeV}$

$$e^+e^- \rightarrow \pi^+\pi^-h_c$$

- Significant $\pi^+\pi^-h_c$ production at $E_{cm} = 4170$ MeV
- h_c is spin singlet (S=0) state different from J/ψ
- Correlated with Y(4260)?
- $\sigma(\pi^+\pi^-h_c)$ cross sections are comparable to $\sigma(\pi^+\pi^-J/\psi)$
- Search for $\pi^{\pm}h_c$ states
- $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ is also interesting

Discovery of $Z_c^{\pm}(4020)$

PRL 111, 242001 (2013)

$Z_c^0(4020)$

- ► Using data collected @4.23, 4.26 and 4.36 GeV to study $e^+e^- \rightarrow \pi^0\pi^0h_c$
- The Born cross sections are found be about half of those of $e^+e^- \rightarrow \pi^+\pi^-h_c$
- Evidence of neutral iso-spin partner of $Z_c^{\pm}(4020)$

 $M = (4023.6 \pm 2.2 \pm 3.9)MeV$

$e^+e^- \rightarrow \pi^{\pm}(D^*\overline{D^*})^{\mp}$ at $E_{cm} = 4260 \text{ MeV}$

- Deviation from phase space decay; Described by a charged state Z[±]_c(4025) decaying to D*D*
- ► If $Z_c^{\pm}(4025)$ is the $Z_c^{\pm}(4020)$ observed in the $\pi^{\pm}h_c$ spectrum $\frac{\Gamma(Z_c(4020) \rightarrow D^*\overline{D^*})}{\Gamma(Z_c(4020) \rightarrow \pi h_c)} = 12 \pm 5$

 $M[Z_c(4020)] = 4023 \pm 3 \text{ MeV}$ $\Gamma[Z_c(4020)] = 8 \pm 4 \text{ MeV}$

 $Z_c^{\pm,0}(4020)$ and $Z_c^{\pm,0}(3900)$

 Qualitatively similar to each other

Correlation with Y(4360) or Y(4260) is clear or not?

 $Z_c^{\pm,0}(4020)$ and $Z_c^{\pm,0}(3900)$

 Qualitatively similar to each other

Correlation with Y(4360) or Y(4260) is clear or not?

 $Z_c^{\pm,0}(4020)$ and $Z_c^{\pm,0}(3900)$

 Qualitatively similar to each other

Correlation with Y(4360) or Y(4260) is clear or not?

 More interesting results

X(3872)

- Mass: Very close to D⁰D^{*0} threshold
- Width: Very narrow (< 1.2 MeV)
- ► $J^{PC} = 1^{++}$
- Radiative transition to J/Ψ is observed
- Nature:
 - Bound $D^0 \overline{D^{*0}}$ "molecular" state?
 - Mixture of excited χ_{c1} and $D^0 \overline{D^{*0}}$ bound state?
 - If it is not χ'_{c1} , where is χ'_{c1} ?

Observation of $e^+e^- \rightarrow \gamma X(3872)$

- ► Search for $\gamma X(3872)$ with $X(3872) \rightarrow \pi^+\pi^- J/\Psi$ at $E_{cm} = 4.23, 4.26$ and 4.36 GeV
- 6.3σ over all data
- Production in Y(4260) is suggestive, but not conclusive $\frac{B(Y(4260) \rightarrow \gamma X(3872))}{B(Y(4260) \rightarrow \pi^{+}\pi^{-}J/\Psi)} \approx 0.1$
- Measuring transitions between states is essential

$$e^+e^- \rightarrow \omega \chi_{c0}$$

- Using data collected @4.23 and 4.26 GeV
- Fit with a single BW assumption, mass lower than 4.26 GeV
- No signal of ωχ_{c1} or ωχ_{c2} found between 4.19 and 4.42 GeV
- Disfavor Y(4260) is a $\omega \chi_{c1}$ molecule

Light hadron spectroscopy at BESII

Overview of light hadron spectroscopy

Constituent Quark Model(CQM) has two types of hadrons

- ► Mesons: qq
- Baryons: qqq
- QCD allows hadrons of other types
 - Multi-quark states: (more than 3 quarks)
 - ► Hybrids: qq̄g
 - ► Glueballs: gg, ggg, ...
- BESIII has collected the largest J/ψ and $\psi(2S)$ data sample in the world
 - > 1.3 billion J/ψ events taken in 2009 and 2012
 - > 0.5 billion $\psi(2S)$ events taken in 2009 and 2012
- Over the past few years, many new particles have been found or confirmed at BESIII
 - ► X(pp̄), X(1835), X(1870), X(1810), X(1840), X(2120), X(2370), ...

$\omega \varphi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega \varphi$

- ► $J/\psi \rightarrow \gamma \omega \phi$ is a DOZI process, but has a similar branch ratio compared to that of $J/\psi \rightarrow \gamma \phi \phi$, an OZI process
 - Dynamical effect arising from intermediate meson rescattering
 - A manifestation of $f_0(1710)$
 - Hadrons of new types: tetraquark, hybrid, glueball, ...

Resonance	J^{PC}	$M({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	Events	ΔS	Δndf	Significance
X(1810)	0++	1795 ± 7	95 ± 10	1319 ± 52	783	4	>300
$f_2(1950)$	2++	1944	472	665 ± 40	211	2	20.4σ
$f_0(2020)$	0^{++}	1992	442	715 ± 45	100	2	13.9σ
$\eta(2225)$	0-+	2226	185	70 ± 30	23	2	6.4σ
Coherent nonresonant component	0-+			319 ± 24	45	2	9.1 <i>o</i>

Analysis of $J/\psi \rightarrow \gamma \eta \eta$

- Lattice QCD predicts the lowest lying 0⁺⁺ glueball occurs in 1.5 to 1.7 GeV, and the lightest 2⁺⁺ glueball has mass around 2.2GeV
- $\eta\eta$ system: Even⁺⁺ states (mainly 0⁺⁺ and 2⁺⁺), ideal place for search of scalar and tensor glueballs
 - Crystal Ball observed $f_0(1710)$ in $J/\psi \rightarrow \gamma \eta \eta$
 - Crystal Barrel observed $f_0(1500)$ in $p\bar{p} \rightarrow \pi^0 \eta \eta$
 - Comparison to $\pi\pi$, $K\overline{K}$, $\eta\eta'$ system
- $J/\psi \rightarrow \gamma \eta \eta$ at BESIII
 - High statistics
 - EMC: CsI(T1) crystals, high performance
 - Low background

Partial Wave Analysis of $J/\psi \rightarrow \gamma \eta \eta$

- $f_0(1710)$ and $f_0(2100)$ are dominant scalars, $f_0(1500)$ exists
- $f_2'(1525)$ is the dominant tensor, $f_2(1810)$ and $f_2(2340)$ exist
- Production rate of $f_0(1500)$ is approximately one order smaller than that of $f_0(1710)$ and $f_0(2100)$
- Production rate of $f_0(1710)$ in radiative J/ψ decays is compatible with LQCD's prediction on that of a pure gauge scalar glueball.
- Large overlap between $f_0(1710)$ and a glueball?

Resonance	Β(J/ψ→γΧ→γηη)	Significance
f ₀ (1500)	(1.65 ^{+0.36} -0.31 ^{+0.51} -1.40)×10 ⁻⁵	8.2σ
f ₀ (1710)	(2.35 ^{+0.13} -0.11 ^{+1.24} -0.74)×10 ⁻⁴	25.0σ
f ₀ (2100)	(1.13 ^{+0.09} -0.10 ^{+0.64} -0.28)×10 ⁻⁴	13.9σ
f ₂ '(1525)	(3.42 ^{+0.43} -0.51 ^{+1.37} -1.30)×10 ⁻⁵	11.0σ
f ₂ (1810)	(5.40 ^{+0.60} -0.67 ^{+3.42} -2.35)×10 ⁻⁵	6.4σ
f ₂ (2340)	(5.60 ^{+0.62} -0.65 ^{+2.37} -2.07)×10 ⁻⁵	7.6σ
0** PHSP	(1.47 ^{+0.01} -0.02)×10 ⁻⁴	12.4σ

Observation of $\eta' \rightarrow \pi^+\pi^-\pi^+\pi^-(\pi^+\pi^-\pi^0\pi^0)$

- First observation the branching ratios
- Clearly support the model: Chiral perturbation and Vector-meson dominance

 $B(\eta' \to \pi^+ \pi^- \pi^+ \pi^-)$ = (8.53 ± 0.69 ± 0.64) × 10⁻⁵

 $B(\eta' \to \pi^+ \pi^- \pi^0 \pi^0)$ = (1.82 ± 0.35 ± 0.18) × 10⁻⁴

PWA of $\psi(2S) \rightarrow p\bar{p}\pi^0$

- Two new baryonic excited states are observed in PWA: N(2300) [J^P = 1/2⁺], N(2570) [J^P = 5/2⁻]
- *N*(1885) or *N*(2065) has not been found

Resonance	$M({\rm MeV}/c^2)$	$\Gamma({\rm MeV}/c^2)$	ΔS	$\Delta N_{\rm dof}$	Sig.
N(1440)	$1390^{+11}_{-21}^{+21}_{-30}$	$340^{+46+70}_{-40-156}$	72.5	4	11.5σ
N(1520)	1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	19.8	6	5.0σ
N(1535)	1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	49.4	4	9.3σ
N(1650)	1650^{+5+11}_{-5-30}	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	$1700^{+30}_{-28}^{+30}_{-35}^{+32}$	$450^{+109+149}_{-94-44}$	55.6	6	9.6σ
N(2300)	$2300\substack{+40+109\\-30-0}$	$340\substack{+30+110\\-30-58}$	120.7	4	15.0σ
N(2570)	2570^{+19+34}_{-10-10}	250^{+14+69}_{-24-21}	78.9	6	11.7 σ

PWA of $\psi(2S) \rightarrow p\bar{p}\eta$

- ► $\psi(2S) \rightarrow N(1535)\bar{p}$ is dominant
- ▶ $J^{P} = 1/2^{-}$
- No evidence for a pp̄ resonance that was observed by BESII and CLEO-c without PWA

 $M = 1524 \pm 5^{+10}_{-4} \text{ MeV}$ $\Gamma = 130^{+27}_{-24} {}^{+57}_{-10} \text{ MeV}$

X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- A distinct enhancement can be clearly seen on mass spectrum of $3(\pi^+\pi^-)$ around 1.84 GeV
- Mass is consistent with that of X(1835), but the width is much smaller
- A new decay modes of X(1835)?
 - > X(1835) is likely to have similar properties as η_c . $3(\pi^+\pi^-)$ is a relatively large decay mode of η_c , also for X(1835)?

 $M = 1842.2 \pm 4.2^{+7.1}_{-2.6} \text{ MeV}$ $\Gamma = 82 \pm 14 \pm 11 \text{ MeV}$

X(1840) in $J/\psi \rightarrow \gamma 3(\pi^+\pi^-)$

- X(1835) is likely to have similar properties as η_c .
 - ► $3(\pi^+\pi^-)$ is a relatively large decay mode of η_c , also for X(1835)?
- A distinct enhancement can be clearly seen on mass spectrum of $3(\pi^+\pi^-)$ around 1.84 GeV
- Mass is consistent with that of X(1835), but the width is much smaller
- A new decay modes of X(1835)?

 $M = 1842.2 \pm 4.2^{+7.1}_{-2.6} \text{ MeV}$ $\Gamma = 82 \pm 14 \pm 11 \text{ MeV}$

Summary of Observations

- Lots of XYZ results at BESIII
 - Charged Z particles are observed, very close to the DD* and D*D* threshold, at least four quark exotics
 - ▶ New production mode of *X*(3872)
 - > Y resonances are very likely related to these particles' production
 - ▶ Observation of $e^+e^- \rightarrow \omega \chi_{c0}$, no $\omega \chi_{c1}$ or $\omega \chi_{c2}$ @ [4.19, 4.42 GeV]

Summary of Observations

- Lots of XYZ results at BESIII
 - Charged Z particles are observed, very close to the DD* and D*D* threshold, at least four quark exotics
 - ▶ New production mode of *X*(3872)
 - Y resonances are very likely related to these particles' production
 - ▶ Observation of $e^+e^- \rightarrow \omega \chi_{c0}$, no $\omega \chi_{c1}$ or $\omega \chi_{c2}$ @ [4.19, 4.42 GeV]
- By using huge data samples collected for charmonium decays at BESIII, a lot of results have been obtained,
 - ► X(1810) is confirmed
 - First observation of $X(1840) \rightarrow 3(\pi^+\pi^-)$
 - Study of $\eta\eta$ system
 - Observation of $\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^- (\pi^+ \pi^- \pi^0 \pi^0)$
 - Study of N^* baryons in $\psi(2S) \rightarrow p\bar{p}\pi^0$, $p\bar{p}\eta$

Summary of Observations

- Lots of XYZ results at BESIII
 - Charged Z particles are observed, very close to the DD* and D*D* threshold, at least four quark exotics
 - ▶ New production mode of *X*(3872)
 - Y resonances are very likely related to these particles' production
 - ▶ Observation of $e^+e^- \rightarrow \omega \chi_{c0}$, no $\omega \chi_{c1}$ or $\omega \chi_{c2}$ @ [4.19, 4.42 GeV]
- By using huge data samples collected for charmonium decays at BESIII, a lot of results have been obtained,
 - ► X(1810) is confirmed
 - First observation of $X(1840) \rightarrow 3(\pi^+\pi^-)$
 - Study of $\eta\eta$ system
 - Observation of $\eta' \rightarrow \pi^+ \pi^- \pi^+ \pi^- (\pi^+ \pi^- \pi^0 \pi^0)$
 - Study of N^* baryons in $\psi(2S) \rightarrow p\bar{p}\pi^0$, $p\bar{p}\eta$
- With more data sample accumulated at BESIII, exciting future is ahead!

Thanks a lot!