# Early Results & Future Prospects for BESIII

Stephen Lars Olsen, Seoul National University YongPyong-2012 Feb 19-23 Gangwon-do Korea

### Institute of High Energy Physics -- Beijing --



## The Beijing Electron Positron Collider (BEPCII)



To Tiananmen Square (~10 km)

# **BEPCII storage rings**





Beam energy: 1.0 - 2.3 GeVPeak Luminosity:  $Design:1 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ Achieved:  $0.65 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}$ Beam energy measurement: Using Compton backscattering technique. Accuracy:  $\delta E_{\text{beam}} \approx 5 \times 10^{-5}$  $\Rightarrow \delta E_{\text{beam}} \approx 50 \text{ KeV} @E_{\text{beam}} \approx m_{\tau}$ 



# **BESIII** Collaboration



# Data



2015: ψ(3770): 5-10 fb<sup>-1</sup> for DD physics

#### luminosity since startup



# Physics program @ BESIII

#### Light hardron physics

-meson & baryon spectroscopy
-multiquark states
-threshold effects
-glueballs & hybrids
-two-photon physics
-form-factors

#### Charmonium physics:

- precision spectroscopy
- transitions and decays

#### QCD & $\tau$ -physics:

- precision *R*-measurement
- $\tau$  decays

#### Charm physics:

- semi-leptonic form factors
- $f_D \& f_{D_s}$  decay consts.
- CKM matrix:  $V_{cd}$ ,  $V_{cs}$
- $D^0$ - $D^0$  mixing and CPV
- strong phases

#### Precision mass measurements:

- $\tau$  mass
- $D^0$  mass

 $\frac{XYZ \text{ meson physics:}}{-Y(4260) \rightarrow \pi \pi h_c}$  decays

### Light hadron physics

threshold effects and mixing in the  $a_0(890) - f_0(980)$  light scalar meson system

# "standard" hadrons

-- ABC's (hangeul?) of particle physics --

**<u>mesons</u>**: bound states of a of quark and anti-quark



 $\pi^- = (d\overline{u})$ 

**baryons:** bound state of 3 quarks



 $\Lambda = (uds)$ 

### mesons come in nonets



 $(\pi^+,\pi^0,\pi^-)$ =lightest







# baryons come in octets & decuplets



J<sup>P</sup>=3/2<sup>+</sup>



### P-wave meson nonets



# The "light" scalar mesons

another scalar nonet?



# The $f_0(600)$ (the " $\sigma$ ")



 $\sigma$  pole position:  $(541 \pm 39) - i(252 \pm 42)$  MeV

# $K_0(800)^{\pm}$ (the " $\kappa^{\pm}$ ")

From a Partial Wave Analysis of  $J/\psi \rightarrow K^+\pi^0 K_s\pi^$ with either M(K<sup>+</sup> $\pi^0$ ) or M(K<sub>s</sub> $\pi^-$ ) = M(K<sup>\*±</sup>) ± 80 MeV



κ pole position:  $(849 \pm 77^{+18}_{-14}) - i(256 \pm 40^{+46}_{-22})$  MeV

#### Signals for $f_0(980) \rightarrow \pi\pi \quad \& \rightarrow K^+K^-$

Resonances in  $J/\psi \to \phi \pi^+ \pi^-$  and  $\phi K^+ K^-$ 

BESII PLB 607, 243 (2005)



#### Signal for $a_0(980) \rightarrow \eta \pi$



PHYSICAL REVIEW D 80, 032001 (2009)

#### Signal for a₀(980)→K<sup>+</sup>K<sup>-</sup>



# Problems with qq assignment for the light scalar meson nonet

Inverted mass spectrum



- Also: In  $q\bar{q}$  meson nonets, the I=1 state (here the  $a_0(980)$ ) has no s-quarks
  - m(f<sub>0</sub>(980))≈m(a<sub>0</sub>(980)) → "ideal" mixing & *small* s-quark content in f<sub>0</sub>(980) strong a<sub>0</sub>(980) & f<sub>0</sub>(980) couplings to KK indicate strong OZI-rule violations
    - No "light" J<sup>P</sup>=1<sup>+</sup> and 2<sup>++</sup> partner nonets in the same mass range

# If not qq, then what?

Possibilities that have been suggested:



loosely bound meson-antimeson "molecule"



J.D.Weinstein & N.Isgur PRD 27, 588 (1983)

R.L.Jaffe PRD 15, 267 (1977)

# KK: enhanced $a_0(980)^0 \leftrightarrow f_0(980)$ mixing

isospin violation enhanced by K<sup>0</sup> – K<sup>+</sup> mass difference

C. Hanhart, B. Kubis, and J. R. Pelaez, Phys. Rev. D 76,074028 (2007)



## BESIII study of $a_0(980)^0 \leftrightarrow f_0(980)$ mixing



BESIII PRD 83, 032003 (2011)

 $a_0(980)^0 \leftrightarrow f_0(980)$  mixing results



Statistics limited, but we should have lots more data soon

 $J/\psi \rightarrow \gamma f_0(980)\pi^0, f_0(980) \rightarrow \pi\pi$ 

#### BESIII arXiv:1201:2737 (→PRL) ← last month!



### comparison: Isospin violations in $\eta' \rightarrow \pi \pi \pi$



#### Anomalous $f_0(980)$ lineshape in $\eta(1405) \rightarrow f_0(980)\pi^0$



# Effect of Triangle Singularity?



# Physics program @ BESIII

#### Light hardron physics

-meson & baryon spectroscopy
-multiquark states
-threshold effects
-glueballs & hybrids
-two-photon physics
-form-factors

#### Charmonium physics:

precision spectroscopy
transitions and decays

#### QCD & $\tau$ -physics:

- precision *R*-measurement

-  $\tau$  decays

#### Charm physics:

- semi-leptonic form factors
- $f_D \& f_{D_s}$  decay consts.
- CKM matrix:  $V_{cd}$ ,  $V_{cs}$
- $D^0$ - $D^0$  mixing and CPV
- strong phases

#### Precision mass measurements:

- τ mass
- $D^0$  mass

 $\frac{XYZ \text{ meson physics:}}{-Y(4260) \rightarrow \pi \pi h_c \text{ decays}}$ 

## Precision charmonium

- mass of the  $\eta_c~ \bigstar$  charmonium ground state
- properties of the  $h_c~ \bigstar$  most recently discovered charmonium state



# $\eta_c(1S)$

- The S-wave spin-singlet charmonium ground state, found in 1980
- M &  $\Gamma$  measurements: -J/ $\psi$  radiative transitions: M ~ 2978.0 MeV,  $\Gamma$  ~ 10 MeV - $\gamma\gamma$  processes / B $\rightarrow$ K $\eta_c$ : M = 2983.1 $\pm$ 1.0 MeV/,  $\Gamma$  = 31.3 $\pm$ 1.9 MeV





#### γγ, pp̄, B decay

### $\psi' \rightarrow \gamma \eta_c, \eta_c \rightarrow exclusive \text{ decays}$

interference with non-resonant background is significant!!



Relative phase φ values from each mode are consistent within 3σ,
→ use a common phase value in the simultaneous fit.

M: 2984.4 ± 0.5 ± 0.6 MeV  $\Gamma$ : 30.5 ± 1.0 ± 0.9 MeV  $\checkmark$ : 2.35 ± 0.05 ± 0.04 rad BESIII arXiv:111:0398 → PRL

# Summary of recent $\eta_c$ results





# $h_{c}({}^{1}P_{1})$

• Spin singlet *P* wave (S=0, L=1)

- Potential model: if non-zero *P*-wave spin-spin interaction,  $\Delta M_{hf}(1P) = M(h_c) - \langle m(1 \ ^3P_J) \rangle \neq 0$ where  $\langle m(1 \ ^3P_J) \rangle = [(M(\chi_{c0}) + 3M(\chi_{c1}) + 5M(\chi_{c2})]/9],$ 
  - CLEOc 1<sup>st</sup> observed  $h_c$  in  $ee \rightarrow \psi' \rightarrow \pi^0 h_c$ ,  $h_c \rightarrow \gamma \eta_c$   $\Delta M_{hf}(1P)=0.08\pm0.18\pm0.12 \text{ MeV}/c^2$ Consistent with 1P hyperfine splitting = 0.

 $\frac{Theoretical prediction:}{BF(\psi(2S) \rightarrow \pi^{0}h_{c}) = (0.4-1.3) \times 10^{-4}}$ BF(h<sub>c</sub> → γη<sub>c</sub>) =48% (NRQCD) BF(h<sub>c</sub> → γη<sub>c</sub>) =88% (PQCD) Kuang, PR D65 094024 (2002)

 $BF(h_c \rightarrow \gamma \eta_c) = 38\%$ Godfrey and Rosner, PR D66 014012(2002)

# methods for studying the h<sub>c</sub>



 $\psi \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c$ 



BESIII: PRL 104 132002 (2010) Mass = 3525.40±0.13±0.18 MeV/c<sup>2</sup> Width = 0.73±0.45±0.28 MeV <1.44 MeV @90%

> CLEOc: PRL 101 182003 (2008) Mass = **3525.28±0.19±0.12** MeV Width: fixed at 0.9 MeV

Hyperfine mass splitting  $\Delta M_{hf}(1^1P) = M(h_c) - \langle m(1^3P_J) \rangle$ 

BESIII: 0.10±0.13±0.18 MeV/c<sup>2</sup> CLEOc: 0.02±0.19±0.13 MeV/c<sup>2</sup>

By combining inclusive results with E1-photon tagged results

 $BF(\psi' \rightarrow \pi^{0} h_{c}) = (8.4 \pm 1.3 \pm 1.0) \times 10^{-4}$  $BF(h_{c} \rightarrow \gamma \eta_{c}) = (54.3 \pm 6.7 \pm 5.2)\%$ 

<u>Agrees with prediction</u> from Kuang, Godfrey, Dude et al.

 $\psi' \rightarrow \pi^0 h_c, h_c \rightarrow \gamma \eta_c, \eta_c exclusive$  decays



#### 16 different $\eta_c$ decay channels

Simultaneous fit to  $\pi^0$  recoiling mass  $\mathfrak{M}^2/d.o.f. = 32/46$ Mass =  $3525.31 \pm 0.11 \pm 0.15$   $MeV/c^2$ Width =  $0.70 \pm 0.28 \pm 0.25$  MeV

#### consistent with BESIII E<sub>1</sub>-tagged results

 $\eta_c$  lineshape from  $\psi' \rightarrow \pi^0 h_c$ ,  $h_c \rightarrow \gamma \eta_c$ 



The  $\eta_c$  lineshape in  $h_c \rightarrow \gamma \eta_c$  is not as distorted as in  $\psi' \rightarrow \gamma \eta_c$  decays; the non-resonant interfering bkg is small (non-existent?). Ultimately, this channel will be best suited to determine  $\eta_c$  resonance parameters.

yesterday's search  $\rightarrow$  today's discovery  $\rightarrow$  tomorrow's calibration

# Physics program @ BESIII

#### Light hardron physics

-meson & baryon spectroscopy
-multiquark states
-threshold effects
-glueballs & hybrids
-two-photon physics
-form-factors

#### Charmonium physics:

- precision spectroscopy
- transitions and decays

#### QCD & $\tau$ -physics:

- precision *R*-measurement
- $\tau$  decays

#### Charm physics:

- semi-leptonic form factors
- $f_D \& f_{D_s}$  decay consts.
- CKM matrix:  $V_{cd}$ ,  $V_{cs}$
- $D^0$ - $D^0$  mixing and CPV
- strong phases

#### Precision mass measurements:

- $\tau$  mass
- $D^0$  mass

 $\frac{XYZ \text{ meson physics:}}{-Y(4260) \rightarrow \pi \pi h_c} \text{ decays}$ 

# Charmed meson physics at BESIII

coherent process:

$$e^+e^- \rightarrow \psi^{''} \rightarrow D^0\overline{D}^0$$



The initial state C=-1: 
$$\psi_{-} = \frac{1}{\sqrt{2}} \left( |D^{0}\rangle |\overline{D}^{0}\rangle - |\overline{D}^{0}\rangle |D^{0}\rangle \right)$$
  
$$\hat{c}|\overline{D}^{0}\rangle = |D^{0}\rangle$$
 input to B-factory  
 $\phi_{3} \& D^{0}-D^{0}$  mixing

measurements

coherent amplitudes:

$$\Gamma_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle \mp \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$$

# CP-tagged D decays



| CP=+1                                                | CP=-1                                 |
|------------------------------------------------------|---------------------------------------|
| K⁺K⁻ (~0.4%)                                         | K <sub>s</sub> π <sup>0</sup> (~1.2%) |
| π⁺π⁻ (~0.1%)                                         | K <sub>s</sub> η (~0.4%)              |
| K <sub>s</sub> π <sup>0</sup> π <sup>0</sup> (~0.8%) | K <sub>s</sub> ω (~1%)                |

$$A_f^{\mathsf{m}} = A(D^{CP\mathsf{m}} \to f) = \frac{1}{\sqrt{2}} \left( \left\langle f \left| D^0 \right\rangle \mathsf{m} \left\langle f \left| \overline{D}^0 \right\rangle \right) \right\rangle = \frac{1}{\sqrt{2}} \left( A_f \mathsf{m} \overline{A}_f \right)$$



$$2\sqrt{R_f}\cos\delta \approx \frac{\left|A_f^{+}\right|^2 - \left|A_f^{-}\right|^2}{\left|A_f^{+}\right|^2 + \left|A_f^{-}\right|^2} = \frac{Br(D^{CP+} \to f) - Br(D^{CP-} \to f)}{Br(D^{CP+} \to f) + Br(D^{CP-} \to f)}$$

BESIII now has 10x more data

for  $f = K^+ \pi^-$  CLEOc finds  $\cos \delta_{K\pi} = 22^{\circ} \pm 16^{\circ}$  with 281 pb<sup>-1</sup> PRD 78 012001



### m<sub>BC</sub> of D<sub>s</sub> Single Tag part of data @ 4010 MeV



# D analyses currently in progress I

1) Purely leptonic decays:



$$\Gamma(D^+ \to l^+ \upsilon_l) = \frac{G_F^2 f_{D^+}^2}{8\pi} |V_{cd}|^2 m_l^2 m_{D^+} (1 - \frac{m_l^2}{m_{D^+}^2})^2$$

All quantities well measured except  $f_{D+}$ . Use W.A.  $|V_{cd}|$  & compare  $f_{D+}$  to LQCD.

### D<sup>+</sup>-> $\mu^+\nu$ Measurement







M<sup>2</sup><sub>miss</sub> Distribution (part of data)

# **Expectations for** $f_D$ (with existing data)

| EXP or Theory                              | f <sub>D+</sub> (MeV)   |
|--------------------------------------------|-------------------------|
| BESIII expectation [2.9 fb <sup>-1</sup> ] | ~ <b>2.8% (stat.)</b> 🔇 |
| CLEO-c (818 pb <sup>-1</sup> )             | 206±9 <b>[4.4%]</b>     |
| Lattice[1]                                 | $208\pm4$               |
| Lattice[2]                                 | $217\pm10$              |
| PQL                                        | $197 \pm 9$             |
| QL(QCDSF)                                  | $206 \pm 23$            |
| QS(Taiwan)                                 | $235\pm16$              |
| QL(UKQCD)                                  | $210 \pm 20$            |
| QL                                         | $211 \pm 18$            |
| QCD Sum Rules[1]                           | 177±21                  |
| QCD Sum Rules[2]                           | $203 \pm 20$            |
| Field Correlators                          | 210±10                  |
| Light Front                                | 206                     |

# D analyses currently in progress II

2) semi-leptonic decays:



 $D^0 \rightarrow K^-/\pi^- e^+ \nu$  Measurement

#### Candidate events for $D^0 \rightarrow K^-e^+\nu_e$ , $\pi^-e^+\nu_e$



# Physics program @ BESIII

#### Light hardron physics

-meson & baryon spectroscopy
-multiquark states
-threshold effects
-glueballs & hybrids
-two-photon physics
-form-factors

#### Charmonium physics:

- precision spectroscopy
- transitions and decays

#### QCD & $\tau$ -physics:

- precision *R*-measurement
- $\tau$  decays

#### Charm physics:

- semi-leptonic form factors
- - $f_D \& f_{D_s}$  decay consts.
- CKM matrix:  $V_{cd}$ ,  $V_{cs}$
- $D^0$ - $D^0$  mixing and CPV
- strong phases



 $\frac{XYZ \text{ meson physics:}}{-Y(4260) \rightarrow \pi \pi h_c \text{ decays}}$ 

## Precision mass measurements



numerology?

$$\frac{(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau})^2}{(m_e + m_\mu + m_\tau)} = 1.4999973^{+0.000039}_{-0.000030}$$



is M<sub>X(3872)</sub> above or below m<sub>D0</sub>+m<sub>D\*0</sub>?



# **BEPCII** beam energy monitor





# Validate at the $\psi'$ peak

The accuracy of beam energy measurement was studied by comparison of  $\psi(2s)$  resonance mass 3686.09  $\pm$  0.040 MeV, with its value obtained using the energy obtained using BEMS data.



### expected precision on $m_{\tau}$



# **Concluding remarks**

- BEPCII is operating near design luminosity & BESIII is performing at state-of-art levels
- Clear evidence for the influence of the KK threshold on the a<sub>0</sub>(980)-f<sub>0</sub>(980) system
   probably not pure KK molecules, but dynamical effects are strong
- ■World's largest sample ever of  $\psi$ "→ DD decays already collected ■ precision measurements of  $f_{D}$ ,  $|V_{cs}|$  and  $|V_{cd}|$  & strong phases in progress
- Plan for order-of-mag. increases in J/ψ & ψ' samples soon, then a large D<sub>s</sub> sample
   precision R scan, τ-mass measurement, Y(4260) studies.... also planned.

# 감사합니다

# Thank you