The J/ ψ and ψ ' Radiative Decays

Xiaoyan SHEN

Institute of High Energy Physics, China

CHARM2012, May 14-17, 2012 Hawaii, USA

Outline

- Introduction
- J/ ψ and ψ ' radiative decays
- Summary

New forms of hadrons

Hadrons consist of 2 or 3 quarks:

Naive Quark Model:

- QCD predicts the new forms of hadrons:
 - Multi-quark states : Number of quarks >= 4
 - Hybrids : qqg, qqqg ...
 - Glueballs : gg, ggg ...

- None of the non-qqbar or non-qqq states is established experimentally.
- Search for new hadrons and systematic study of the spectroscopy – a way of understanding the internal structure of hadrons.
- Radiative decays of the charmonium states provide good lab.

Started physics run from 2009.

Search for exotic 1⁻⁺ states in $\eta'\pi$

- VES (1993): 37 GeV π⁻N→η'π⁻N (PLB 313, 276 (1993))
 Found a P-wave resonant exotic 1⁻⁺ in η'π system:
- E852 (2001): 18 GeV $\pi^- p \rightarrow \eta' \pi^- p$ (PLB 563, 3997 (2001)) Found a₂(1700)+exotic π_1 (1600)
- COMPASS (2008 data): 190 GeV π⁻p→η'π⁻p (T. Schlueter Hadron2011 talk)

Evidence for a₄(2040) found, but resonant P-wave cannot be confirmed.

Evidence for $\pi_1(1600)$ in $\chi_{c1} \rightarrow \eta' \pi^+ \pi$ - at CLEO-c

arXiv: 1109.5843, PRD

 χ_{c1} produced in ψ (2S) $\rightarrow \gamma \chi_{c1}$, Signal purity: 94.6% (1.3%)

A full amplitude analysis with isobar model :

Assuming BW shape for 1⁻⁺: M=1670±30±20 MeV/c² , Γ =240 ± 50 ± 60 MeV Significance > 4.0 σ (different models)

The BESIII Detector

The BESIII Collaboration

http://bes3.ihep.ac.cn

BESIII commissioning

- July 19, 2008: first e⁺e⁻ collision event in BESIII
- Nov. 2008: ~ 14M ψ (2S) events for detector calibration
- 2009: 106M ψ(2S) 4*CLEOc 225M J/ψ 4*BESII
- 2010: 900 pb⁻¹ ψ(3770)
- 2011: 1800 pb⁻¹ ψ(3770) **3.5*CLEOc** 470 pb⁻¹ @ 4.01 GeV
- 2012: ψ(2S): ~0.4 billion,
- $@J/\psi$ since April 5, ~0.7 billion (peak lum. 2.7X10³²)

Peak luminosity reached 6.5 X 10³² @3770 MeV.12

pp enhancement at threshold

- □ Conventional meson?
- pp bound state/ multiquark/ glueball/ ...

Phys. Rev. Lett., 91, 022001

Confirmed by CLEOc and BESIII

No significant narrow threshold enhancement observed here:

PWA of $J/\psi \rightarrow \gamma p \overline{p} @ BESIII$

Phys. Rev. Lett. 108, 112003 (2012)

$f_0(2100)$ / $f_2(1910)\,$ fixed to PDG. Signif. of X(ppbar) >>30 σ

- The fit with a BW and S-wave FSI(I=0) factor can well describe ppb mass threshold structure.
- It is much better than that without FSI effect, and $\Delta 2 \ln L = 51$ $\Rightarrow 7.1\sigma$.

•

$$\begin{split} M &= 1832_{-5}^{+10}(\text{stat.})_{-17}^{+18}(\text{syst.}) \pm 19(\text{model}) \text{ MeV/c}^2 \\ \Gamma &= 13 \pm 39(\text{stat.})_{-13}^{+10}(\text{syst.}) \pm 4(\text{model}) \text{ MeV/c}^2(\Gamma < 60 \text{ MeV/c}^2@90 \text{ C.L.}) \\ \text{Br}(J/\psi \to \gamma X) \text{Br}(X \to p\overline{p}) = (9.0_{-1.1}^{+0.4}(\text{stat.})_{-5.0}^{+1.5}(\text{syst.}) \pm 2.3(\text{model})) \times 10^{-5} \end{split}$$

PWA of $\psi' \rightarrow \gamma p \overline{p} @ BESIII$

Phys. Rev. Lett. 108, 112003 (2012)

 $\begin{array}{l} Br(\psi(2S) \to \gamma X) Br(X \to p\bar{p}) = \\ (4.57 \pm 0.36(stat.)^{+1.23}_{-4.07} \pm 1.28(model)) \times 10^{-6} \\ \text{The production ratio } R: \\ R = \frac{Br(\psi(2S) \to \gamma X(p\bar{p}))}{Br(J/\psi \to \gamma X(p\bar{p}))} = (5.08^{+0.71}_{-0.45}(stat.)^{+0.67}_{-3.58}(syst.) \pm 0.12(model))\% \end{array}$

Suppressed compared with 12% rule!

X(1835) in η'π⁺π⁻

 Γ =67.7±20.3(stat)±7.7(syst)MeV

Theoretical interpretation:

> pp̄ bound state, η excitation

> Are X(pp̄) and X(1835) from the same source?

X(1835) in J/ $\psi \rightarrow \gamma \pi^+ \pi^- \eta'$ at BESIII PRL 108, 112003

- ➢ Fit with four resonances (acceptance weighted BW⊗ gaussian)
- Three background components:
 - (1) Contribution from non- η' events estimated by η' mass sideband
 - (2) Contribution from $J/\psi \to \pi^0 \pi^+ \pi^- \eta' (\eta' \to \gamma \rho)$ with re-weighting method
 - (3) **Contribution from "PS background"** $f_{bkg}(x) = (x - m_0)^{1/2} + a_0(x - m_0)^{3/2} + a_1(x - m_0)^{5/2}, m_0 = 2m_{\pi} + m_{\eta'}$

Red line: estimated contribution of (1)+ (2) Black line: total background

resonance	$M({ m MeV}/c^2)$	$\Gamma(\text{ MeV}/c^2)$	significance
X(1835)	1836.5 ± 3.0	190.1 ± 9.0	$>> 20\sigma$
X(2120)	2122.4 ± 6.7	84 ± 16	$> 7.2\sigma$
X(2370)	2376.3 ± 8.7	83 ± 17	$> 6.4\sigma$

PWA is needed, inference among the resonances needs to be considered.

Isospin violation: $\eta' \rightarrow 3\pi$

arXiv:1201:2737 accepted by PRL

Large Isospin breaking: $\eta(1405) \rightarrow f_0(980)\pi^0$

arXiv:1201:2737 accepted by PRL

$$\frac{\text{BR}(\eta(1405) \to f_0(980)\pi^0)}{\text{BR}(\eta(1405) \to a_0(980)\pi)} \approx (17.9 \pm 4.2)\%$$

Theoretical explanation: effect of Triangle Singularity? J.J.Wu et al., PRL 108, 081803(2012)

Isospin breaking: $\eta' \rightarrow 3\pi$

$$\frac{\mathrm{BR}(\eta' \to \pi^{+}\pi^{-}\pi^{0})}{\mathrm{BR}(\eta' \to \pi^{+}\pi^{-}\eta)} \approx 0.9\%$$
$$\frac{\mathrm{BR}(\eta' \to \pi^{0}\pi^{0}\pi^{0})}{\mathrm{BR}(\eta' \to \pi^{0}\pi^{0}\eta)} \approx 1.6\%$$

Lattice QCD predicts the 0⁺⁺ scalar glueball mass in the range 1.5 - 1.7 GeV.

 $f_0(1500)$ and $f_0(1710)$ are good candidates.

$f_0(1710)$: a long history of uncertainty.

Process	ess Collaboration		Γ(MeV)	J^{PC}
$J/\psi{ o}\gamma\eta\eta$	CBAL(82)	1640 ± 50	220^{+100}_{-70}	2++
$\pi^- p {\rightarrow} K^0_s K^0_s n$	BNL(82)	1771_{-53}^{+77}	200^{+156}_{-9}	0++
$\pi^-N{ ightarrow}K^0_sK^0_sn$	FNAL(84)	1742 ± 15	57 ± 38	
$\pi^- p \rightarrow \eta \eta N$	GAMS(86)	1755 ± 8	< 50	0++
$J/\psi { ightarrow} \gamma K^+ K^-$	MARKIII(87)	1720 ± 14	130 ± 20	2++
$J/\psi \rightarrow \gamma KR \ \gamma \pi^+ \pi^-$	DM2(88)	$1707 \pm 10 \\ 1698 \pm 15$	$\begin{array}{c} 166\pm33\\ 136\pm28 \end{array}$	
$pp \rightarrow ppK^+K^-$ $ppK^0_SK^0_S$	WA76(89)	$\begin{array}{c} 1713 \pm 10 \\ 1706 \pm 10 \end{array}$	$\begin{array}{c} 181\pm30\\ 104\pm30 \end{array}$	2++
$J/\psi { ightarrow} \gamma K ar{K}$	MARKIII(91)	1710 ± 20	186 ± 30	0++
$p\bar{p} \rightarrow \pi^0 \eta \eta$	E760(93)	1748 ± 10	264 ± 25	$(even)^{++}$
$J/\psi { ightarrow} \gamma 4\pi$	MARKIII data D. Bugg <i>et al.</i> (95)	1750 ± 15	160 ± 40	0++
$J/\psi \rightarrow \gamma K^+ K^-$	BES(96)	$\begin{array}{c} 1696 \pm 5^{+9}_{-34} \\ 1781 \pm 8^{+10}_{-31} \end{array}$	$\begin{array}{c} 103 \pm 18 \substack{+30 \\ -11} \\ 85 \pm 24 \substack{+22 \\ -19} \end{array}$	2++ 0++
$J/\psi { ightarrow} \gamma K R$	MARKIII data W. Dunwoodie(97)	1704_{-23}^{+16}	124_{-44}^{+52}	0++
$pp \rightarrow p_f(K^+K^-)p_s$	WA102(99)	1730 ± 15	100 ± 25	0++
$pp \rightarrow p_f(\pi^+\pi^-)p_s$	WA102(99)	1750 ± 25	105 ± 34	0++
$pp \rightarrow K^+ K^- \pi^+ \pi^-$	WA102(99)	1710 ± 16	126 ± 24	0++
$pp \rightarrow p_f(K^+K^-)p_s$	WA76(99)	1710 ± 25	105 ± 34	0++
$pp \rightarrow p_f \eta \eta p_s$	WA102(00)	1698 ± 18	120 ± 26	0++
$J/\psi { ightarrow} \gamma 4\pi$	BES(00)	1740^{+20}_{-25}	135^{+40}_{-25}	0++

PWA analysis shows one scalar in 1.7 GeV region $M = 1740 \pm 4^{+10}_{-25}$ MeV $\Gamma = 166^{+5+15}_{-8-10}$ MeV

BESII: PRD 68 (2003) 052003

0⁺⁺ **is strongly favored in** $\pi\pi$. $M = (1765^{+4}_{-3} \pm 11) \text{ MeV}$ $\Gamma = (145 \pm 8 \pm 23) \text{ MeV}$

BESII: PRD 68 (2003) 052003

f₀(1710)

• Clear $f_0(1710)$ peak in $J/\psi \rightarrow \omega KK$.

$$M = 1740 \pm 30 MeV$$
$$\Gamma = 125 \pm 20 MeV$$

• No $f_0(1710)$ observed in $J/\psi \rightarrow \omega \pi \pi$!

$$\frac{BR(f_0(1710) \to \pi\pi)}{BR(f_0(1710) \to K\overline{K})} < 0.13 \quad @95\%CL$$

f₀(1790) ?

A bump at around 1790 MeV is observed in J/ψ → φππ.

$$M = 1790_{-30}^{+40} MeV$$

$$\Gamma = 270_{-30}^{+60} MeV$$

$$\frac{BR(f_0(1790) \to \pi\pi)}{BR(f_0(1710) \to K\overline{K})} \sim 1.5$$

Inconsistent with what we observed in $J/\psi \rightarrow \omega \pi \pi$, ωKK

 $\frac{BR(f_0(1710) \to \pi\pi)}{BR(f_0(1710) \to K\overline{K})} < 0.13 \quad @95\%CL$

 \rightarrow f₀(1790) a new scalar ? •

 $J/\psi \to \gamma \phi \phi, \phi \to K^+ K^-$ (OZI) $J/\psi \to \gamma \omega \phi$ (DOZI)

 $M = 1812_{-26}^{+19} \pm 18 \text{ MeV/c}^2$ $\Gamma = 105 \pm 20 \pm 28 \text{ MeV/c}^2$

J^{PC} favors 0⁺⁺ over 0⁻⁺ and 2⁺⁺

Phys. Rev. Lett. 96(2006)162002

Preliminary PWA results at BESIII:

Is X(1810) the f₀(1710)/f₀(1790) or new state?

Study of $\eta\eta$ system

- First observed f₀(1710) from
- J/ψ radiative decays to ηη
 by Crystal Ball in 1982.

- Crystal Barrel Collaboration (2002)
 Mm^{-(GeV)}
 analyzed the three final states π⁰π⁰π⁰, ηπ⁰π⁰ and π⁰ηη with
 K matrix formalism. Found a 2⁺⁺ (~1870), but no f₀(1710).
- E835 (2006): ppbar $\rightarrow \pi^{0}\eta\eta$, found f₀(1500) and f₀(1710).
- WA102 and GAMS all identified $f_0(1710)$ in $\eta\eta$.

Clear resonances

Very low BG level

Preliminary PWA results of $J/\psi \rightarrow \gamma \eta \eta$

- f₀(1710) and f₀(2100) are dominant scalars
- f₀(1500) exists (8.2 σ)
- f2'(1525) is the dominant tensor

Preliminary PWA results of $J/ψ \rightarrow \gamma \eta \eta$

Resonance	$Mass(MeV/c^2)$	$\operatorname{Width}(\operatorname{MeV}/c^2)$	$\mathcal{B}(J/\psi \to \gamma X \to \gamma \eta \eta)$	Significance
$f_0(1500)$	1468^{+14+20}_{-15-74}	$136^{+41+8}_{-26-100}$	$(1.61^{+0.29+0.41}_{-0.32-1.28}) \times 10^{-5}$	8.2σ
$f_0(1710)$	1759_{-6-25}^{+6+14}	172^{+10+31}_{-10-15}	$(2.35^{+0.07+1.23}_{-0.07-0.72}) \times 10^{-4}$	25.0 σ
$f_0(2100)$	2081^{+13+23}_{-13-34}	273^{+27+65}_{-24-18}	$(9^{+0.57+5.52}_{-0.52-2.21}) \times 10^{-5}$	13.9 σ
$f_{2}'(1525)$	1513^{+5+3}_{-5-10}	75^{+12+15}_{-10-7}	$(2.41^{+0.43+1.22}_{-0.50-1.23}) \times 10^{-5}$	11.0 σ
$f_2(1810)$	1822^{+29+61}_{-24-54}	229^{+52+64}_{-420}	$(5.38^{+0.60+3.31}_{-0.67-2.24}) \times 10^{-5}$	6.4σ
$f_2(2340)$	$2362^{+31+139}_{-30-59}$	334^{+2}_{-99}	$(5.58^{+0.61+1.93}_{-0.65-1.81}) \times 10^{-5}$	7.6 σ
		- Pr		

Summary

- 1 billion J/ ψ data will come soon at BESIII
- Still a long and hard way to understand the light hadron spectroscopy. Need data from different experiments. Need a global analysis?

