Highlights and Perspectives at BESIII

Wolfgang Gradl for the BESIII collaboration

MENU 2013 1st October 2013

BEPCII and BESIII

BESI

BSRF

Tiananmen

1010

JG U

BEPCII storage rings: a τ -charm factory

Upgrade of BEPC (started 2004, first collisions July 2008) Beam energy 1...2.3 GeV Optimum energy 1.89 GeV Single beam current 0.91 A Crossing angle: ±11 mrad Design luminosity: $10^{33} \text{ cm}^{-2} \text{s}^{-1}$ Achieved: $7 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ Beam energy measurement: Laser compton backscattering $\Delta E/E \approx 5 \times 10^{-5}$ ($\approx 50 \text{ keV}$ at τ threshold)

BESIII detector

Completely new detector Comparable performance to CLEO-c, + muon ID

BES III Highlights | W. Gradl | 4

BESIII data sets

Direct production of 1⁻⁻ states studied with world's largest scan dataset

Today's

BESIII at **BEPCII**

Light hadron spectroscopy *pp̄* threshold enhancement Nucleon resonances

Charmonium spectroscopy $\eta_c(1S)$ properties

XYZ

$$e^+e^- \rightarrow J/\psi \pi^+\pi^-$$
 and $h_c \pi^+\pi^-$
A variation of Z_c
 $e^+e^- \rightarrow \gamma X(3872)$

Light Hadron Spectroscopy

$J/\psi \rightarrow \gamma p \bar{p}$ threshold enhancement

normal meson? pp bound state? multiquark? glueball? FSI?

$$\begin{split} M &= (1860^{+3}_{-10} \, {}^{+5}_{-25}) \, \text{MeV/}c^2 \\ \Gamma &< 38 \, \text{MeV} \quad (90\% C.L.) \end{split}$$

Compatible with S-wave BW

Compatible with S-wave BW

 $M = (1861^{+6}_{-13}) \text{ MeV}/c^2$ $\Gamma < 30 \text{ MeV} \quad (90\% C.L.)$

Spin-parity analysis essential to determine nature

PWA of $J/\psi \rightarrow \gamma p \bar{p}$ at $M(p \bar{p}) < 2.2 \,\text{GeV}/c^2$

PRL 108, 112003

Result:

 $J^{PC} = 0^{-+}$, preferred over other J^{PC} assignments with $> 6.8\sigma$

$$\begin{split} M &= 1832^{+19+18}_{-5} \pm 19 (\text{mod}) \, \text{MeV}/c^2 \\ \Gamma &= 13 \pm 39^{+10}_{-13} \pm 4 (\text{mod}) \, \text{MeV} \qquad \Gamma < 76 \, \text{MeV}/c^2 \quad (90\% C.L.) \end{split}$$

$\psi(2S) \rightarrow \rho \bar{\rho} \pi^0$

- $\begin{array}{l} \bullet \hspace{0.1 cm} 2\text{-body decay:} \\ \psi(2S) \rightarrow X\pi^{0}, X \rightarrow p\bar{p} \\ \psi(2S) \rightarrow p\bar{N}^{*}, \bar{N}^{*} \rightarrow \bar{p}\pi^{0} + \text{c.c.} \end{array}$
- isospin conservation:
 Δ suppressed
- using 108 M $\psi(2S)$
- best solution: N(1440), N(1520), N(2090), N(1535), N(1650), N(1720)
 N(2300)[¹/₂⁺]
 N(2570)[⁵/₂⁻]
- No need for N(1885), N(2065) *pp* [1⁻⁻] enhancement
- Systematics: additional possible resonances

$\psi(2S) \rightarrow \rho \bar{\rho} \pi^0$

Resonance	$M({\rm MeV}/c^2)$	$\Gamma(\text{MeV}/c^2)$	ΔS	$\Delta N_{ m dof}$	Sig.
N(1440)	1390^{+11+21}_{-21-30}	$340^{+46+70}_{-40-156}$	72.5	4	11.5 <i>o</i>
N(1520)	1510^{+3+11}_{-7-9}	115^{+20+0}_{-15-40}	19.8	6	5.0σ
N(1535)	1535^{+9+15}_{-8-22}	120^{+20+0}_{-20-42}	49.4	4	9.3 <i>o</i>
N(1650)	1650^{+5+11}_{-5-30}	150^{+21+14}_{-22-50}	82.1	4	12.2σ
N(1720)	1700^{+30+32}_{-28-35}	$450^{+109+149}_{-94-44}$	55.6	6	9.6 <i>0</i>
N(2300)	$2300^{+40+109}_{-30-0}$	$340\substack{+30+110\\-30-58}$	120.7	4	15.0σ
N(2570)	$2570\substack{+19+34\\-10-10}$	250^{+14+69}_{-24-21}	78.9	6	11.7 σ

$N(2300)[\frac{1}{2}^+]$ $N(2570)[\frac{5}{2}^-]$ never seen before

BES III Highlights | W. Gradl | 11

Charmonium Spectroscopy

Mass and width of $\eta_c(1S)$

Ground state charmonium ($c\bar{c}$), but mass and width not well known: Tension between radiative J/ψ transitions and production in $\gamma\gamma$, $p\bar{p}$, *B* decays

CLEO-c found distortion in $\eta_c(1S)$ line shape

Phys. Rev. Lett. 102,011801

 $c\overline{c}$ hyperfine splitting: $\Delta m_{hf}(1S) \equiv m(J/\psi) - m(\eta_c)$ important experimental input for Lattice QCD, dominated by $\Delta m(\eta_c)$

BES III Highlights | W. Gradl | 13

$\psi(3686) \rightarrow \gamma \eta_c(1S), \eta_c$ exclusive decays

PRL **108**, 222002 using 106 M ψ(3686)

Interference with non-resonant decay important! All decay channels show same relative phase within $3\sigma \Rightarrow$ fix to common value in fit

 $m(\eta_c) = 2984.3 \pm 0.6 \pm 0.6 \text{ MeV/}c^2$ $\Gamma(\eta_c) = 32.0 \pm 1.2 \pm 1.0 \text{ MeV}$ $\phi = 2.40 \pm 0.07 \pm 0.08 \text{ rad} \text{ or}$ $= 4.19 \pm 0.03 \pm 0.09 \text{ rad}_{\text{rad}}$

BES III Highlights | W. Gradl | 14

$\eta_c(1S)$ mass and width

plots: S. Olson

Consistent with results from *B* factories in other production mechanisms.

Line shape, interference with non-resonant decays important

Hyperfine splitting $\Delta m(1S) = 112.6 \pm 0.8 \text{ MeV/}c^2$ \Rightarrow in better agreement with LQCD and quark model predictions

Exotic charmonium-like states

$e^+e^- \rightarrow J/\psi \, \pi^+\pi^-$ at 4.26 GeV

- 1⁻⁻ resonance Y (4260) seen in ISR production at e⁺e⁻ BABAR, PRL 95, 142001 (2005); CLEO, PRD 74, 091104 (2006); Belle, PRL 99, 182004 (2007)
- No obvious place in charmonium spectrum; unexpectedly large decay rate into $J/\psi \pi^+\pi^-$ for charmonium state
- BESIII: take large datasets $(500 1000 \text{ pb}^{-1})$ at interesting \sqrt{s} ■ $\sigma^B(e^+e^- \rightarrow J/\psi \pi^+\pi^-) = (62.9 \pm 1.9 \pm 3.7) \text{ pb}$ in good agreement with BABAR and Belle

 $e^+e^- \rightarrow h_c(1P)\pi^+\pi^-$

BESIII preliminary, arXiv:1309.1896 (2013)

Reconstruct $h_c \rightarrow \gamma \eta_c$, $\eta_c \rightarrow 16$ exclusive hadronic modes

at $\sqrt{s} = 4.26 \,\text{GeV}$

 $h_c \pi^+ \pi^-$ sample sizes

\sqrt{s}	\mathcal{L}_{int}	Ncand
4.23	1090	859
4.26	827	568
4.36	545	469

Purity $\sim 65\%$

Cross section comparison

- $\sigma(e^+e^- \rightarrow h_c \pi^+\pi^-) \approx \sigma(e^+e^- \rightarrow J/\psi \pi^+\pi^-),$ but different line shape
- Local maximum around 4.23 GeV?
- Broad structure around 4.4 GeV?

$Z_c(3900)^{\pm} \rightarrow J/\psi \pi^{\pm}$

- 1D fit to extract resonance parameters,
 S-wave Breit Wigner with phase space factor & efficiency corr.
- $M = (3899.0 \pm 3.6 \pm 4.9) \text{ MeV}/c^2$, $\Gamma = (46 \pm 10 \pm 20) \text{ MeV}$
- Significance $> 8\sigma$
- Confirmed by Belle PRL 110, 252002 and with CLEOc data arXiv:1304.3036

$Z_c(4020) \rightarrow h_c \pi^+$

BESIII preliminary, arXiv:1309.1896 (2013)

- Using data taken at 4.23 GeV, 4.26 GeV 4.36 GeV (total 2.4 fb⁻¹)
- See structure in $h_c \pi^{\pm}$ spectrum, close to $D^* \overline{D}^*$ threshold :

 $M(Z_c(4020)) = 4022.9 \pm 0.8 \pm 2.7 \text{ MeV}/c^2$ $\Gamma(Z_c(4020)) = 7.9 \pm 2.7 \pm 2.6 \text{ MeV}$

No significant signal $Z_c(3900) \rightarrow h_c \pi^+$ seen

 $e^+e^- \rightarrow Z_c(4020)^+\pi^- \rightarrow h_c\pi^+\pi^-$ cross section BESIII preliminary, arXiv:1309.1896 (2013)

Systematics mainly from h_c and η_c branching fraction 95% of syst. uncertainty common to all data points

$e^+e^- \to \pi^\pm (D\bar{D^*})^\mp$

Single tag analysis:

- reconstruct 'bachelor' π^+ and $D^0 \to K^- \pi^+$ or $D^- \to K^+ \pi^- \pi^-$
- require D* in missing mass

• veto
$$e^+e^- \rightarrow (D^*\bar{D}^*)^0$$

 apply kinematic fit; look in mass recoiling against π⁺: see clear D^{*} signal over smooth background

Fit with rel. Breit Wigner (S-wave), extract pole position.
 Background modelled with empirical smooth function
 D⁰D^{*−} and D⁺D^{*0} give compatible result → average:

 $M = 3883.9 \pm 1.5 \pm 4.2 \text{ MeV}/c^2$ $\Gamma = 24.8 \pm 3.3 \pm 11.0 \text{ MeV}$ $\sigma \times \mathcal{B} = 83.5 \pm 6.6 \pm 22.0 \text{ pb}$

 $Z_c(3885)^+$ Quantum numbers?

- NEW BESIII preliminary
- $\cos \theta_{\pi}$: angle between bachelor pion and beam axis in CMS
- 0⁺ excluded by parity conservation
- $0^ \pi$ and $Z_c(3885)$ in *P*-wave, with $J_z = \pm 1 \Rightarrow dN/d \cos \theta_{\pi} \propto \sin^2 \theta_{\pi}$
- 1⁻ π and $Z_c(3885)$ in *P*-wave \Rightarrow d*N*/d cos $\theta_{\pi} \propto 1 + \cos^2 \theta_{\pi}$
- 1⁺ π and $Z_c(3885)$ in *S* or *D* wave. Assume *D* wave small near threshold: flat distribution in $\cos \theta_{\pi}$.

data clearly favour $J^P = 1^+$ for $D\overline{D}^*$ structure

first measurement of J^P for one of the Z_c

 $e^+e^-
ightarrow \pi^- (D^* \overline{D}^*)^+$

BESIII preliminary, arXiv:1308.2760 (2013)

Partial reconstruction technique: reconstruct π^- , D^+ and one π^0 from $D^{*+} \rightarrow D^+ \pi^0$ or $D^{*0} \rightarrow D^0 \pi^0$

Fit to π^{\pm} recoil mass yields $401 \pm 47 Z_c(4025)$ events; > 10σ $M = 4026.3 \pm 2.6 \pm 3.7 \text{ MeV}/c^2$, $\Gamma = 24.8 \pm 5.6 \pm 7.7 \text{ MeV}$

Summary of "Z states"

Channel	Mass [MeV/c ²]	Width [MeV]		
$J/\psi \pi^+ \ (D\overline{D}^*)^+$	$\begin{array}{c} 3899.0 \pm 3.6 \pm 4.9 \\ 3883.9 \pm 1.5 \pm 4.2 \end{array}$	$\begin{array}{c} 46 \pm 10 \pm 20 \\ 24.8 \pm 3.3 \pm 11.0 \end{array}$		
$\begin{array}{c} h_c \pi^+ \\ (D^* \bar{D}^*)^+ \end{array}$	$\begin{array}{c} 4022.9\pm0.8\pm2.7\\ 4026.3\pm2.6\pm3.7\end{array}$	$\begin{array}{c} 7.9 \pm 2.7 \pm 2.6 \\ 24.8 \pm 5.6 \pm 7.7 \end{array}$		

Suggestively grouped the four states - but are they related in this way?

Nature of these states?

- Tetraquark L. Maiani, A. Ali et al.
- Hadronic molecule U.-G. Meissner, F.K. Guo et al.
- Hadro-charmonium M. B. Voloshin
- Meson loop Q. Zhao et al.
- ISPE model X. Liu et al.

...

$e^+e^- ightarrow \gamma X(3872) ightarrow \gamma J/\psi \, \pi^+\pi^-$

BESIII preliminary

 $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma J/\psi \, \pi^+\pi^-$

Plots show partial dataset at $\sqrt{s} = 4.23 \,\text{GeV}$

- Use ISR $\psi(3686)$ signal for calibration of rate, mass and mass resolution
- Model signal peak with MC signal width \otimes Gaussian with σ_M

 $\psi(3686) \ N = 1242; M = (3685.96 \pm 0.05) \text{ MeV}; \sigma_M = (1.84 \pm 0.06) \text{ MeV}$ X(3872) $N = 15.0 \pm 3.9; M = (3872.1 \pm 0.8 \pm 0.3) \text{ MeV}$ significance > 5.3 σ

 $e^+e^-
ightarrow \gamma X(3872)
ightarrow \gamma J/\psi \, \pi^+\pi^-$

Suggestive: radiative decay $Y(4260) \rightarrow \gamma X(3872)$, not from continuum

Combined with
$$\sigma^{B}(e^{+}e^{-} \to J/\psi \pi^{+}\pi^{-}) = (62.9 \pm 4.2) \text{ pb}$$

$$\frac{\sigma^{B}[e^{+}e^{-} \to \gamma X(3872)] \times \mathcal{B}(X \to J/\psi \pi^{+}\pi^{-})}{\sigma^{B}(e^{+}e^{-} \to J/\psi \pi^{+}\pi^{-})} = (5.6 \pm 2.0) \times 10^{-3}$$

Assuming $\mathcal{B}(X \to J/\psi \pi^+ \pi^-) \approx 5\%$: large transition ratio

$$\frac{\sigma^{\mathcal{B}}[e^+e^- \to \gamma X(3872)]}{\sigma^{\mathcal{B}}(e^+e^- \to J/\psi \, \pi^+ \pi^-)} \approx 11\%$$

BES III Highlights | W. Gradl | 30

Perspectives

- Precise determination of resonance parameters
- Spin-parity assignment: angular analysis / PWA
- More decay modes: $\psi(3686)\pi$, $\eta_c\rho$, open charm ...
- Production mechanisms, production rates
- Test various models
- Search for neutral partners
- Excited Z_c , Z'_c states? $Z_{cs} \rightarrow J/\psi K$?
- Other XYZ states?
- More data at 4.26 GeV and higher energies

Summary

- Rich physics programme at BESIII with large and unique data sets J/ψ , $\psi(3686)$, $\psi(3770)$, XYZ
- Light hadron spectroscopy:
- Precision measurements of charmonia
- Discovery of new, exotic (!) states $Z_c(3900)$...
- Not shown today: precise measurements of
 - τ mass
 - hadronic cross sections
 - transition form factors
 - open charm decays
 - **۲**

Many new exciting results on their way

