

DIS 2015 - XXIII International Workshop on Deep-Inelastic Scattering and Related Subjects

Collins asymmetries in inclusive charged KK and $K\pi$ pairs at BABAR

I. Garzia - INFN Sezione di Ferrara, F. Anulli - INFN Sezione di Roma on behalf of the Babar Collaboration

Introduction: the Collins effect

Our understanding of the hadronic physics depends strongly on what we know about the parton distributions functions (PDFs) and <u>fragmentation functions</u> (FFs)

- Universal
- Non-perturbative objects

Transverse Momentum Dependent (TMD) FFs \Rightarrow to study the spin-dependent observables

• when only spinless hadrons (π, K) are considered, we have:

collins FF [NPB 396, 161 (1993)]: chiralodd function, related to the probability that a transversely polarized quark (q[†]) fragments into a spinless hadron

Physics motivation:

- e⁺e⁻ annihilation experiments are the most clean environment to study fragmentation processes
- evolution of TMD objects
- Global analysis (PRD 78,032011 (2007); PRD 87,094019 (2013), PRD 91,014034 (2015)):
 - combines Semi Inclusive Deep Inelastic Scattering (SIDIS) and e⁺e⁻ data
 - extraction of H^{\perp}_1 and transversity parton distributions h_1 for the "u" and "d" quarks

Collins effect in e⁺e⁻ annihilation

In e⁺e⁻ \to q \overline{q} , spins unknown, but $s_q \parallel s_{\overline{q}}$ whit transverse spin component $\sim \sin^2\theta$

- exploit this correlation by using hadrons in opposite jets
- define **favored** ($u \rightarrow \pi^+$, $d \rightarrow \pi^-$) and **disfavored** ($d \rightarrow \pi^+$, $u \rightarrow \pi^-$, $s(\overline{s}) \rightarrow \pi^{\pm}$) FFs

$$e^+e^- \rightarrow q\bar{q} \rightarrow h_1h_2X \quad (q=u,d,s) \Rightarrow \sigma \propto \cos(\phi_1 + \phi_2)H_1^{\perp(h_1)} \times H_1^{\perp(h_2)}$$

Azimuthal modulation wrt the quark spin direction: Collins effect (or Collins asymmetry)

Example: Unlike $\pi\pi$ pairs (U)

Collins asymmetry for $\pi\pi$ PRD 90,052003 (2014)

Example: Unlike KK pairs (U)

Collins asymmetry for KK:

Favored contribution to the fragmentation of the strange quark

Collins asymmetries for KK pairs not yet available

PEP-II and BaBar Detector

- Asymmetric e⁺e⁻ collider operating at the $\Upsilon(4S)$ resonance (\sqrt{s} =10.58 GeV)
 - High Energy Ring (HER): 9.0 GeV e⁻
 - Low Energy Ring (LER): 3.1 GeV e⁺
 - c.m.-lab boost, $\beta\gamma$ ≈0.56
- High luminosity: $\mathcal{L} \sim 468 \text{ fb}^{-1}$ used here

- Asymmetric detector
 - c.m. acceptance -0.9<cos θ *<0.85 wrt e beam
- Excellent performance
 - good tracking, mass resolution
 - good γ , π^0 reconstruction
 - full e, μ , π , K, and p identification

NIM A479,1 (2002), update: NIM A729, 615 (2013)

Reference frames

$$\frac{d\sigma(e^{+}e^{-} \to h_{1}h_{2}X)}{d\Omega dz_{1}dz_{2}d\phi_{1}d\phi_{2}} = \sum_{q,\bar{q}} \frac{3\alpha^{2}}{Q^{2}} \frac{e_{q}^{2}}{4} z_{1}^{2} z_{2}^{2} \left[(1 + \cos^{2}\theta)D_{1}^{q,(0)}(z_{1})\bar{D}_{1}^{q,(0)}(z_{2}) + \sin^{2}(\theta)\cos(\phi_{1} + \phi_{2})H_{1}^{\perp,(1),q}(z_{1})\bar{H}_{1}^{\perp,(1),q}(z_{2}) \right]$$

All quantities in e+e- center of mass

 θ : angle between the e⁺e⁻ axis and the thrust axis; $\phi_{1,2}$: azimuthal angles between $P_{h1(h2)}$ and the scattering plane

RF0

 θ_2 : angle between the e⁺e⁻ axis and P_{h2}; ϕ_0 : angle between the plane spanned by P_{h2} and the e⁺e⁻ axis, and the direction of P_{h1} perpendicular to P_{h2}.

n

$$\frac{d\sigma(e^{+}e^{-} \to h_{1}h_{2}X)}{d\Omega dz_{1}dz_{2}d^{2}\vec{q}_{T}} = \frac{3\alpha^{2}}{Q^{2}}z_{1}^{2}z_{2}^{2}\left\{A(y)\mathcal{F}[D_{1}\bar{D}_{2}] + B(y)\cos(2\phi_{0})\mathcal{F}\left[(2\hat{h}\cdot\vec{k}_{T}\hat{h}\cdot\vec{p}_{T} - \vec{k}_{T}\cdot\vec{p}_{T})\frac{H_{1}^{\perp}\bar{H}_{2}^{\perp}}{M_{1}M_{2}}\right]\right\}$$

Measurement of Collins effect

- Normalized azimuthal distribution for hadron pair with same charge (L), opposite charge (U), and the sum of the two samples (C)
- Collins effect is not simulated in uds-MC → strong azimuthal MC modulation principally due to the detector acceptance
- nonzero Collins effect in data sample → different combinations of fav and dis FF for L, U, and C

Double ratio of U/L and U/C normalized distributions: Collins effect measured by fitting the double ratio distributions with the function $B+A\cdot\cos(\phi_i)$

BaBar results for $\pi\pi$ pairs

PRD 90,052003 (2014)

- Collins asymmetry measured as function of
 - 6×6 bins of pion fractional energy (similar behavior in RF0, for both UL and UC)
 - 4×4 bins of (p_{t1},p_{t2}) in RF12
 - 9 bins of p_{t0} in RF0
 - asymmetry vs. $\sin^2\theta_{th}/(1+\cos^2\theta_{th})$ and $\sin^2\theta_2/(1+\cos^2\theta_2)$

Analysis Strategy

- Goal: simultaneous measurement of KK, $K\pi$, and $\pi\pi$ pairs
 - Event and track selection
 - we identify the three sample of hadron pairs (KK, K π , $\pi\pi$), and we divide the two hadrons in opposite jets using the thrust axis
 - we measure the azimuthal angles ϕ_1 and ϕ_2 in RF12, and ϕ_0 in RF0
 - we construct the normalized raw distributions for like (L), Unlike (U) and Charged (C=U +L) hadron pairs: $R^i=N^i(\phi)/\langle N\rangle$
 - we calculate the ratios of normalized distributions: U/L and U/C and we fit these distributions
 - we extract the Collins asymmetries and we correct for the K/π misidentification, background contributions,...
 - we study systematic effects
- * RESULTS: 4x4 (z_1,z_2) bins, where $z_{1,2}=2E_h/\sqrt{s}$ is the hadron fractional energy
 - $\mathbf{z}_{1,2} = (0.15 0.2), (0.2 0.3), (0.3 0.5), (0.5 0.9)$
 - RF12 and RF0
 - **♦** A^{UL} and A^{UC}

Event and track selection

More stringent cuts optimized in order to reduce biases on the KK pairs

EVENT SELECTION

- Number of charged tracks > 2
- Selection of two jets topology: thrust > 0.8
- $|\cos\theta_{\text{thrust}}| < 0.6$
- Visible energy E_{vis} > 11 GeV
- Most energetic photon $E_{\gamma} < 2 \text{ GeV}$

Thrust axis: charged tracks + neutral candidates; thrust axis direction chosen random

TRACK SELECTION

- Electrons and muons veto
- K and π in the DIRC acceptance region
- K/π fractional energy z: 0.15 < z < 0.9
- Opening angle $\theta_{h-thrust}$ of hadron with respect to the thrust axis $< 45^{\circ}$
- Qt<3.5 GeV, where Qt is the transverse momentum of the virtual photon in the two hadrons center-of-mass energy

Study of MC asymmetry

Small asymmetry measured in the MC sample

· always much smaller than asymmetry measured in data

Detailed studies show that the main source of the MC asymmetries come from ISR

- E_{vis}>11 GeV to reduce this contribution for KK pairs
- Similar distributions in the RF0 frame
- Final results will be corrected for the small residual MC bias

Linear configuration of (z_1,z_2) bins used for the comparison

Extraction of KK, $K\pi$ and $\pi\pi$ asymmetries (I)

GOAL: simultaneous extraction of the asymmetries corrected for backgrounds and K/π misidentification for each interval of fractional energy

- 3 samples: KK, $K\pi$, $\pi\pi$
- we fit independently the double ratio distributions of the three samples

$$A_{KK}^{\rm meas} = F_{uds}^{\rm KK} \cdot A_{KK}^{Collins} + \sum_i F_i^{KK} \cdot A_{KK}^i \stackrel{\rm background contribution}{}$$

Extraction of KK, $K\pi$ and $\pi\pi$ asymmetries (I)

GOAL: simultaneous extraction of the asymmetries corrected for backgrounds and K/π misidentification for each interval of fractional energy

- 3 samples: KK, $K\pi$, $\pi\pi$
- we fit independently the double ratio distributions of the three samples

$$A_{KK}^{ ext{meas}} = F_{uds}^{ ext{KK}} \cdot A_{KK}^{ ext{Collins}} + \sum_i F_i^{KK} \cdot A_{KK}^i \overset{ ext{background}}{\sim} \cot i ext{contribution}$$

1. Background sources:

- mainly from $e^+e^- \rightarrow c\overline{c}$ events (more than 30%); smaller contribution from $B\overline{B}$, $\tau^+\tau^- (A_{bb}\sim A_{\tau}\sim 0)$
 - we construct a D*-enhanced MC and data control samples
 - we calculate from MC the fraction $(F(f)_{\text{sig/bkg}}^{\text{hh}})$ of hadron pairs coming from signal (uds) and background events $(c\overline{c}, B\overline{B}, \tau^+\tau^-)$ $D^{*\pm} \to D^0\pi^{\pm}, D^0 \to K\pi, D^0 \to K\pi$

$$\begin{cases} A_{KK}^{\text{meas}} = F_{uds}^{KK} \cdot A_{KK}^{Collins} + F_{c\bar{c}}^{KK} \cdot A_{KK}^{charm} \\ A_{KK}^{D^*} = f_{uds}^{KK} \cdot A_{KK}^{Collins} + f_{c\bar{c}}^{KK} \cdot A_{KK}^{charm} \end{cases}$$

Fraction of hadron pairs in the data sample (D*-enhanced sample)

$$F(f)_{\text{sig/bkg}}$$
 hh uds, $c\bar{c}$, $B\bar{B}$, $\tau^+\tau^-$

 $K3\pi$, $D^0 \rightarrow K\pi\pi^0$, $D^0 \rightarrow K_S\pi$

Fractions of hadron pairs

From MC samples, we calculate the number of hadron pairs (KK, K π and $\pi\pi$) coming from light quarks and background events:

$$F_i = \frac{N_i^{(MC)}}{N_{data}}$$

Similar distribution for D*-enhanced and $\pi\pi$ samples

Extraction of KK, $K\pi$ and $\pi\pi$ asymmetries (II)

GOAL: simultaneous extraction of the asymmetries corrected for backgrounds and K/π contamination for each intervals of fractional energy

- 3 samples: KK, $K\pi$, $\pi\pi$
- we fit independently the double ratio distributions of the three samples

$$A_{KK}^{ ext{meas}} = F_{uds} \cdot A_{KK}^{Collins} + \sum_i F_i^{KK} \cdot A_{KK}^i$$
 background contribution

2. K/π misidentification:

• we evaluate from MC the fraction $(\xi_{hh}^{(hh)})$ that a given hadron pair is reconstructed as KK, K π , or $\pi\pi$ pair

$$A_{KK}^{\text{meas}} = F_{uds} \cdot \left(\sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{Collins} \right) + F_{c\bar{c}}^{KK} \cdot \left(\sum_{nm} \xi_{nm}^{(KK)} \cdot A_{nm}^{charm} \right)$$

$$\xi_{hh} \text{(hh)} - \text{reconstructed hadron pairs}$$

$$\text{generated hadron pairs}$$

The fractions are evaluated in all samples used in the analysis: uds $(\xi_{hh}^{(hh)})$, D^* -uds $(\xi_{hh}^{(hh)D^*})$, $c\overline{c}$ $(\xi_{hh}^{(hh)c\overline{c}})$, $c\overline{c}$ - D^* $(\xi_{hh}^{(hh)c\overline{c}-D^*})$

Simultaneous extraction of asymmetry

Three samples (KK, $K\pi$, $\pi\pi$) + background + K/π misidentification \Rightarrow system of six equations and six unknown parameters

$$A_{KK}^{meas} = F_{uds}^{KK} \cdot (\xi_{KK}^{(KK)} A_{KK}) + \xi_{K\pi}^{(KK)} A_{K\pi}) + \xi_{\pi\pi}^{(KK)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{uds}^{KK} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)} A_{\pi\pi}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{\pi\pi} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(\pi\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ F_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(KK)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(KK)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{KK} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(KK)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi)c\bar{c}} A_{KK}^{ch} + \xi_{K\pi}^{(K\pi)c\bar{c}} A_{K\pi}^{ch} + \xi_{\pi\pi}^{(K\pi)c\bar{c}} A_{\pi\pi}^{ch}) + \\ f_{c\bar{c}}^{K\pi} \cdot (\xi_{KK}^{(K\pi$$

Effect of the thrust axis reconstruction

The experimental method assumes the thrust axis as $q\overline{q}$ direction, but this is only a rough approximation

- RF12: the azimuthal angles are calculated respect to the thrust axis → large smearing;
- RF0: no thrust axis needed → smearing due only to PID and tracking resolution.
- ⇒ Using the MC sample, we introduce in the simulation several values of asymmetries, and we study the differences between the simulated anche reconstructed ones

- RF12: strong dilution observed
 - correction ranges between 1.3 to 2.3 for increasing z
- RF0: no dilution observed
 - no correction needed

Same corrections applied for the three hadron pair combinations

Systematic uncertainties

A large number of systematic checks were done. The main contributions come from:

- MC uncertainties
- Particle identification (PID)
- Fit procedure
- Dilution method
- Evis cut

Additional check (negligible contributions):

- Beam polarization studies
- Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect

Sum in quadrature of systematic uncertainties

Results: RF12

Simultaneous measurement of KK, $K\pi$ and $\pi\pi$ Collins asymmetries

all corrections are applied

- Rising of the asymmetry as a function of z:
 - more pronounced for U/L
- ♦ A^{UL} KK asymmetry slightly higher than pion asymmetry for high z
- * KK asymmetry consistent with zero at lower z

Note that A^{UL} and A^{UC} asymmetries are obtained using the same data sample, and are strongly correlated

Results: RF0

Simultaneous measurement of KK, $K\pi$ and $\pi\pi$ Collins asymmetries

- all corrections are applied
- Rising of the asymmetry as a function of z:
 - more pronounced for U/L
- A^{UL} KK asymmetry slightly higher than pion asymmetry for high z
- * KK asymmetry consistent with zero at lower z

Note that A^{UL} and A^{UC} asymmetries are obtained using the same data sample, and are strongly correlated

$\pi\pi$ consistency check

Comparison of the $\pi\pi$ asymmetries with those measured in the previous BaBar analysis: PRD 90, 052003 (2014)

- Different kinematic regions: asymmetries rescaled for $\langle \sin^2\theta \rangle / \langle 1 + \cos^2\theta \rangle$
- $^{\circ}$ Average values of the data in the new (z_1,z_2) intervals

$$\frac{R^{UL}}{R^L} = 1 + \cos(\phi_1 + \phi_2) \cdot A_{12}^{UL} = 1 + \cos(\phi_1 + \phi_2) \cdot \frac{\langle \sin^2 \theta_{th} \rangle}{\langle 1 + \cos^2 \theta_{th} \rangle} \cdot \frac{H_1^{\perp}(z)\overline{H}_1^{\perp}(z)}{D_1(z)\overline{D}_1(z)}$$

- · New and previous results are in good agreement each other
 - we averaged those values falling in the new interval
- Cross check \Rightarrow make us confident about the goodness of the simultaneous extraction of KK, K π and $\pi\pi$

Conclusions

- Simultaneous extraction of A_{KK} , $A_{K\pi}$, and $A_{\pi\pi}$ Collins asymmetry
 - Two reference frames: RF12 and RF0
 - $16(z_1,z_2)$ -bins
 - Good agreement with previous BaBar results (PRD 90,052009 (2014))

- Agreement with theoretical prediction !? [PL **B659**, 234 (2008); PR**D 86**, 034025 (2012)]
 - A^{UL} asymmetry for KK are slightly larger than $\pi\pi$
 - \bullet A^{UC} asymmetry for KK are slightly lower than $\pi\pi$

These results will be submitted for publication

Track selection

TRACK SELECTION

- Electrons and muons veto
- K and π in the DIRC acceptance region
- K/ π fractional energy z: 0.15 < z < 0.9
- Opening angle $\theta_{h\text{-thrust}}$ of hadron with respect to the thrust axis $< 45^{\circ}$
- $Q_t < 3.5$ GeV, where Q_t is the transverse momentum of the virtual photon in the two hadrons center-of-mass energy

Fractions of hadron pairs

From MC samples, we calculate the number of hadron pairs (KK, K π and $\pi\pi$) coming from light quarks and background events: $N_i^{(MC)}$

 $F_i = \frac{N_i^{(MC)}}{N_{data}}$

We then calculate the corrected fractions in order to take into account the condition that their sum is equal to 1:

$$F_i^{corr} = F_i + \frac{(1 - \sum_{j=uds}^{cc,bb,\tau} F_j) * \sigma_i^2}{\sum_{j=uds}^{cc,bb,\tau} \sigma_j^2}$$

Similar distribution for D*-enhanced and $\pi\pi$ samples

Systematic uncertainties

- MC uncertainties: we check the bias by using different track selection requirements:
 - different acceptance region for tracks and different Evis cuts applied
 - the largest deviation of the bias w.r.t. the standard selection is combined in quadrature with the MC statistical error and taken as systematic uncertainties
- Particle identification (PID): few percent change in the asymmetry by changing the PID cuts
 - new K/π fractions calculated using the corresponding selectors
 - we calculate the "final asymmetry" (after all correction applied), and we take the average difference as systematic contribution
- Fit procedure: different angular bin size, higher arming contributions
- **Dilution method:** the error on the correction factors is assigned as systematic uncertainty
- Evis cut: we compare the MC-corrected asymmetry in the data sample by changing the Evis requirements

Additional check (negligible contributions):

- Beam polarization studies
- · Asymmetry consistency between different data taking period
- Possible coupling between Collins and detector effect

Sum in quadrature of systematic uncertainties

Systematic uncertainties (II)

Additional check (negligible contributions):

- Beam polarization studies
- · Asymmetry consistency between different data taking period
- Higher harmonic contribution and possible coupling between Collins and detector effect

function used to parameterize the detector dependence

Collins effect:
$$\sigma(\theta,\phi) \sim 1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} A_{Coll} \cos(2\phi)$$
 Detector effect: $\epsilon(\theta,\phi) \sim 1 + f(\theta) A_{acc} \cos(2\phi)$

$$\sigma \cdot \varepsilon = 1 + \frac{\sin^2 \theta}{1 + \cos^2 \theta} A^i_{Coll} \cos(\phi) + f^i(\theta) A^i_{acc} \cos(\phi) + \frac{\sin^2 \theta}{1 + \cos^2 \theta} f^i(\theta) \cdot A^i_{Coll} A^i_{acc} \cdot \cos^2(\phi)$$

$$\begin{split} U/L \sim 1 + [f^U A^U_{acc} - f^L A^L_{acc}] \cos(\phi) + \frac{\sin^2 \theta}{1 + \cos^2 \theta} [A^U_{Coll} - A^L_{Coll}] \cos(\phi) \\ + \frac{\sin^2 \theta}{1 + \cos^2 \theta} [A^U_{Coll} \cdot f^U(\theta) A^U_{acc} - A^L_{Coll} \cdot f^L(\theta) A^L_{acc}] \cos^2(\phi). \quad \text{extra term} \end{split}$$

RF12: comparison of $\pi\pi$ asymmetry from previous results

RF0: comparison of $\pi\pi$ asymmetry from previous results

